Ser1031
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.7.1.1
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser1031  -  SPTAN1 (mouse)

Site Information
LDPAQsAsRENLLEE   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 471378

In vivo Characterization
Methods used to characterize site in vivo:
mass spectrometry ( 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 )
Disease tissue studied:
anthrax infection ( 13 ) , melanoma skin cancer ( 20 )
Relevant cell line - cell type - tissue:
'3T3-L1, differentiated' (adipocyte) ( 2 , 4 , 7 ) , 'brain, cerebellum' ( 22 ) , 'brain, cerebral cortex' ( 17 , 22 ) , 'brain, hippocampus, dentate gyrus' ( 22 ) , 'brain, midbrain' ( 22 ) , 'fat, brown' ( 14 ) , 32Dcl3 (myeloid) [FLT3 (mouse), transfection, chimera with human FLT3-ITD mutant (corresponding to wild type P36888 ( 18 ) , 32Dcl3 (myeloid) ( 18 ) , BaF3 ('B lymphocyte, precursor') [JAK3 (human), transfection] ( 1 ) , brain ( 10 , 14 , 16 , 19 ) , heart ( 14 ) , Hepa 1-6 (epithelial) ( 21 ) , kidney ( 14 ) , liver ( 6 , 9 ) , liver [leptin (mouse), homozygous knockout] ( 9 ) , lung ( 14 ) , macrophage-bone marrow ( 15 ) , macrophage-bone marrow [DUSP1 (mouse), homozygous knockout] ( 15 ) , macrophage-peritoneum ( 8 ) , MEF (fibroblast) [p53 (mouse), homozygous knockout] ( 11 ) , MEF (fibroblast) [TSC2 (mouse), homozygous knockout] ( 12 ) , neuron:postsynaptic density-'brain, hippocampus, CA1 region' ( 3 ) , pancreas ( 14 ) , RAW 264.7 (macrophage) ( 5 ) , skin [mGluR1 (mouse), transgenic, TG mutant mice] ( 20 ) , spleen ( 13 , 14 ) , testis ( 14 )

Upstream Regulation
Regulatory protein:
TSC2 (mouse) ( 11 )
Treatments:
long-term_potentiation ( 3 ) , LPS ( 15 )

References 

1

Degryse S, et al. (2017) Mutant JAK3 phosphoproteomic profiling predicts synergism between JAK3 inhibitors and MEK/BCL2 inhibitors for the treatment of T-cell acute lymphoblastic leukemia. Leukemia 32
28852199   Curated Info

2

Minard AY, et al. (2016) mTORC1 Is a Major Regulatory Node in the FGF21 Signaling Network in Adipocytes. Cell Rep 17, 29-36
27681418   Curated Info

3

Li J, et al. (2016) Long-term potentiation modulates synaptic phosphorylation networks and reshapes the structure of the postsynaptic interactome. Sci Signal 9, rs8
27507650   Curated Info

4

Parker BL, et al. (2015) Targeted phosphoproteomics of insulin signaling using data-independent acquisition mass spectrometry. Sci Signal 8, rs6
26060331   Curated Info

5

Pinto SM, et al. (2015) Quantitative phosphoproteomic analysis of IL-33-mediated signaling. Proteomics 15, 532-44
25367039   Curated Info

6

Wilson-Grady JT, Haas W, Gygi SP (2013) Quantitative comparison of the fasted and re-fed mouse liver phosphoproteomes using lower pH reductive dimethylation. Methods 61, 277-86
23567750   Curated Info

7

Humphrey SJ, et al. (2013) Dynamic Adipocyte Phosphoproteome Reveals that Akt Directly Regulates mTORC2. Cell Metab 17, 1009-20
23684622   Curated Info

8

Wu X, et al. (2012) Investigation of receptor interacting protein (RIP3)-dependent protein phosphorylation by quantitative phosphoproteomics. Mol Cell Proteomics 11, 1640-51
22942356   Curated Info

9

Grimsrud PA, et al. (2012) A quantitative map of the liver mitochondrial phosphoproteome reveals posttranslational control of ketogenesis. Cell Metab 16, 672-83
23140645   Curated Info

10

Trinidad JC, et al. (2012) Global identification and characterization of both O-GlcNAcylation and phosphorylation at the murine synapse. Mol Cell Proteomics 11, 215-29
22645316   Curated Info

11

Hsu PP, et al. (2011) The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332, 1317-22
21659604   Curated Info

12

Yu Y, et al. (2011) Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science 332, 1322-6
21659605   Curated Info

13

Manes NP, et al. (2011) Discovery of mouse spleen signaling responses to anthrax using label-free quantitative phosphoproteomics via mass spectrometry. Mol Cell Proteomics 10, M110.000927
21189417   Curated Info

14

Huttlin EL, et al. (2010) A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 143, 1174-89
21183079   Curated Info

15

Weintz G, et al. (2010) The phosphoproteome of toll-like receptor-activated macrophages. Mol Syst Biol 6, 371
20531401   Curated Info

16

Wiśniewski JR, et al. (2010) Brain phosphoproteome obtained by a FASP-based method reveals plasma membrane protein topology. J Proteome Res 9, 3280-9
20415495   Curated Info

17

Tweedie-Cullen RY, Reck JM, Mansuy IM (2009) Comprehensive mapping of post-translational modifications on synaptic, nuclear, and histone proteins in the adult mouse brain. J Proteome Res 8, 4966-82
19737024   Curated Info

18

Choudhary C, et al. (2009) Mislocalized activation of oncogenic RTKs switches downstream signaling outcomes. Mol Cell 36, 326-39
19854140   Curated Info

19

Zhou J (2009) CST Curation Set: 7413; Year: 2009; Biosample/Treatment: tissue, brain/untreated; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: HXXp[ST]
Curated Info

20

Zanivan S, et al. (2008) Solid tumor proteome and phosphoproteome analysis by high resolution mass spectrometry. J Proteome Res 7, 5314-26
19367708   Curated Info

21

Pan C, Gnad F, Olsen JV, Mann M (2008) Quantitative phosphoproteome analysis of a mouse liver cell line reveals specificity of phosphatase inhibitors. Proteomics 8, 4534-46
18846507   Curated Info

22

Trinidad JC, et al. (2008) Quantitative analysis of synaptic phosphorylation and protein expression. Mol Cell Proteomics 7, 684-96
18056256   Curated Info