Ser18
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.5.9.3
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser18  -  p53 (mouse)

Site Information
IsLELPLsQEtFsGL   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 447490

In vivo Characterization
Methods used to characterize site in vivo:
[32P] bio-synthetic labeling ( 85 ) , electrophoretic mobility shift ( 69 , 77 ) , flow cytometry ( 31 , 48 ) , immunoprecipitation ( 2 , 7 , 45 , 80 , 83 ) , mass spectrometry ( 4 ) , microscopy-colocalization with upstream kinase ( 73 ) , modification-specific antibody ( 64 , 79 ) , mutation of modification site ( 2 , 7 , 22 , 37 , 38 , 45 , 48 , 52 , 59 , 60 , 63 , 64 , 65 , 77 , 79 , 83 , 85 ) , peptide sequencing ( 50 ) , phospho-antibody ( 2 , 3 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 38 , 39 , 40 , 41 , 42 , 44 , 45 , 46 , 47 , 49 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64 , 66 , 67 , 68 , 69 , 70 , 71 , 72 , 73 , 74 , 75 , 76 , 77 , 78 , 79 , 80 , 81 , 82 ) , phosphoamino acid analysis ( 43 ) , phosphopeptide mapping ( 85 ) , western blotting ( 2 , 3 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 38 , 39 , 40 , 41 , 43 , 44 , 45 , 46 , 47 , 48 , 50 , 51 , 52 , 54 , 55 , 59 , 60 , 64 , 69 , 72 , 73 , 75 , 79 , 80 , 81 , 82 , 83 )
Disease tissue studied:
bone cancer ( 47 ) , brain cancer ( 27 ) , glioblastoma ( 27 ) , glioma ( 27 ) , breast cancer ( 7 , 38 , 50 ) , leukemia ( 6 , 25 , 30 , 51 ) , acute myelogenous leukemia ( 30 ) , acute erythroid leukemias, including erythroleukemia (M6a) and very rare pure erythroid leukemia (M6b) ( 51 ) , chronic lymphocytic leukemia ( 6 ) , chronic myelogenous leukemia ( 25 ) , lung cancer ( 7 , 35 , 38 , 45 ) , non-small cell lung cancer ( 7 , 35 , 38 , 45 ) , melanoma skin cancer ( 20 ) , fibrosarcoma of soft tissue ( 38 ) , cancer, squamous cell carcinoma ( 64 ) , testicular cancer ( 45 , 82 )
Relevant cell line - cell type - tissue:
'brain, embryonic' ( 21 ) , 'hematopoietic progenitor, CD34+'-blood ( 25 ) , 'neuron, cortical'-brain ( 67 , 74 ) , 'stem, embryonic' ( 55 , 70 ) , 293 (epithelial) ( 7 ) , 3T3 (fibroblast) [SHP-2 (mouse), homozygous knockout] ( 53 , 66 , 77 ) , 3T3 (fibroblast) ( 31 , 50 , 83 ) , astrocyte-'brain, striatum' ( 61 ) , B lymphocyte-spleen ( 28 ) , B lymphocyte-spleen [p53 (mouse), transgenic] ( 22 ) , BaF3 ('B lymphocyte, precursor') [Abl (mouse), homozygous knockout] ( 25 ) , C141 (epidermal) ( 68 ) , C2C12 (myoblast) ( 10 , 60 ) , CHO (fibroblast) ( 4 ) , COS (fibroblast) ( 46 , 85 ) , DP16.1 (erythroid) [p53 (mouse), transfection] ( 51 ) , epidermal ( 64 ) , ES (stem) ( 79 ) , F9 (testicular) ( 45 , 82 ) , FL5.12 (lymphoid) [Bcl-xL (human), transfection] ( 19 ) , FL5.12 (lymphoid) ( 19 ) , gonad ( 70 ) , hair follicle ( 4 ) , HeLa (cervical) ( 9 , 40 ) , hematopoietic progenitor-bone marrow ( 13 , 57 ) , HK2 (epithelial) ( 41 ) , JB (epithelial) ( 78 ) , JB6 CI41 (epidermal) ( 35 , 80 ) , keratinocyte ( 23 ) , kidney ( 73 ) , L1210 (lymphoblast) ( 6 ) , L929 (fibroblast) ( 38 ) , lymphocyte ( 37 ) , macrophage ( 46 ) , mammary gland ( 72 ) , MCF-7 (breast cell) ( 7 , 38 , 50 ) , MEF (fibroblast) ( 5 , 8 , 9 , 11 , 17 , 23 , 27 , 36 , 37 , 39 , 40 , 43 , 46 , 47 , 60 , 65 , 69 , 73 ) , MEF (fibroblast) [DNAPK (mouse), homozygous knockout] ( 75 ) , MEF (fibroblast) [HMGA1 (mouse), homozygous knockout] ( 12 ) , MEF (fibroblast) [HMGA2 (mouse), homozygous knockout] ( 12 ) , MEF (fibroblast) [IGF1R (mouse)] ( 62 , 63 , 71 ) , MEF (fibroblast) [p21Cip1 (mouse), homozygous knockout] ( 54 ) , MEF (fibroblast) [p53 (mouse), genetic knockin] ( 16 ) , MEF (fibroblast) [p53 (mouse), homozygous knockout] ( 75 ) , MEF (fibroblast) [p53 (mouse)] ( 48 ) , MEF (fibroblast) [PTPN2 (mouse), homozygous knockout] ( 32 ) , MEF (fibroblast) [TOP3B (mouse)] ( 36 ) , melanocyte-skin [IKKB (mouse), homozygous knockout] ( 20 ) , mIMCD-3 (epithelial) ( 81 ) , MMTV-PyMT (breast cell) ( 24 ) , MuLV (lymphoid) ( 76 ) , NCI-H1299 (pulmonary) [p53 (human)] ( 45 ) , NCI-H1299 (pulmonary) ( 7 , 35 , 38 , 49 , 58 ) , neuron:neurosphere-brain ( 15 ) , NHDF (fibroblast) ( 5 ) , parotid acinar-salivary gland ( 44 ) , parotid acinar-salivary gland [Akt1 (mouse)] ( 44 ) , Saos-2 (bone cell) ( 47 ) , SF9 ( 59 ) , skin ( 18 ) , SN4741 (neuron) ( 52 ) , spermatocytes ( 42 ) , spleen ( 2 ) , T lymphocyte ( 19 ) , T lymphocyte-thymus ( 65 ) , T lymphocyte-thymus [p53 (mouse)] ( 48 ) , T lymphocyte-thymus [SOCS1 (mouse), homozygous knockout] ( 26 ) , testis ( 42 ) , thymocyte ( 2 , 34 ) , thymocyte [p53 (mouse), genetic knockin] ( 16 ) , thymus ( 56 ) , U-251 MG (glial) ( 27 ) , vascular smooth muscle cell ('muscle, smooth') ( 33 )

Upstream Regulation
Regulatory protein:
Abl (mouse) ( 17 , 25 ) , Akt1 (mouse) ( 27 , 44 ) , Akt2 (mouse) ( 27 ) , ATM (mouse) ( 8 , 10 , 43 , 69 ) , ATR (human) ( 30 ) , ATR (mouse) ( 43 , 69 ) , BCR-ABL1 (human) ( 13 ) , CD44 (mouse) ( 46 ) , CD74 (mouse) ( 46 ) , CDT1 (human) ( 24 ) , DDB2 (mouse) ( 42 ) , DNAPK (mouse) ( 43 , 75 ) , FOXP1 (human) ( 4 ) , GLUT1 (rat) ( 19 ) , HBpX (retrovirus) ( 30 ) , HK1 (human) ( 19 ) , HMGA1 (mouse) ( 12 ) , HMGA2 (mouse) ( 12 ) , HRas (mouse) ( 27 ) , IKKB (mouse) ( 20 ) , JNK2 (mouse) ( 24 ) , Ku70 (mouse) ( 43 ) , Ku80 (mouse) ( 43 ) , MDM2 (human) ( 44 ) , NCK1 (mouse) ( 40 ) , NFkB-p65 (mouse) ( 11 ) , p16-INK4A (mouse) ( 15 ) , P38A (human) ( 30 ) , p53 (mouse) ( 3 , 59 ) , PKCD (mouse) ( 19 ) , PPM1D (mouse) ( 47 ) , PPP1CC (human) ( 33 ) , PPP2CA (mouse) ( 35 ) , PPP5C (mouse) ( 9 ) , PTPN2 (human) ( 32 ) , SEPT2 (mouse) ( 40 ) , SEPT7 (mouse) ( 40 ) , SOCS1 (mouse) ( 26 ) , TGFB1 (mouse) ( 72 ) , TOP3B (mouse) ( 36 ) , TREX1 (mouse) ( 39 )
Putative in vivo kinases:
AMPKA2 (mouse) ( 58 ) , ATM (mouse) ( 24 , 28 , 76 ) , ATR (mouse) ( 24 ) , ERK1 (mouse) ( 78 , 80 ) , ERK2 (mouse) ( 78 , 80 ) , MELK (mouse) ( 7 ) , P38A (mouse) ( 78 , 80 ) , PKCD (mouse) ( 52 ) , VRK2 iso2 (human) ( 49 )
Kinases, in vitro:
AMPKA2 (human) ( 58 ) , DNAPK (human) ( 84 ) , ERK1 (mouse) ( 78 , 80 ) , ERK2 (mouse) ( 78 , 80 ) , MELK (mouse) ( 7 ) , P38A (mouse) ( 78 , 80 )
Putative upstream phosphatases:
PPP2CA (mouse) ( 35 )
Phosphatases, in vitro:
PPP2CA (mouse) ( 35 )
Treatments:
2-AP ( 57 ) , 4-HT ( 13 ) , adriamycin ( 17 , 24 , 35 , 49 , 60 ) , anti-TGFB1 ( 72 ) , aphidicolin ( 17 , 32 ) , black_tea_polyphenols ( 18 ) , caffeine ( 9 , 24 , 43 , 60 , 68 ) , camptothecin ( 67 ) , ciclosporin ( 41 ) , cisplatin ( 5 , 25 , 62 ) , compound_C ( 19 ) , cycloheximide ( 75 ) , DMNQ ( 33 ) , doxycycline ( 10 ) , EGCG ( 35 , 52 ) , etoposide ( 5 , 19 , 21 , 44 , 67 ) , glucose ( 10 ) , glucose_starvation ( 10 , 11 , 58 ) , H2O2 ( 27 ) , hydroxyurea ( 17 , 50 ) , hypertonic_buffer ( 53 ) , hypoxia ( 74 ) , hypoxia/reoxygenation ( 57 ) , IFN-gamma ( 26 ) , IL-2 ( 19 ) , IL-3 ( 19 ) , IL-3_withdrawal ( 19 ) , imatinib ( 25 ) , ionizing_radiation ( 6 , 15 , 16 , 22 , 28 , 34 , 36 , 39 , 43 , 44 , 47 , 54 , 56 , 60 , 64 , 66 , 69 , 72 , 75 , 79 ) , KU-55933 ( 10 , 25 , 43 ) , LY294002 ( 25 , 56 ) , melatonin ( 8 ) , MIF ( 46 ) , MNNG ( 77 ) , NAC ( 10 ) , okadaic_acid ( 35 ) , PD98059 ( 78 , 80 ) , phorbol_ester ( 18 , 35 ) , rapamycin ( 66 ) , resveratrol ( 18 , 78 ) , rottlerin ( 52 ) , SB202190 ( 78 , 80 ) , SB203580 ( 38 , 51 , 53 , 74 ) , serum ( 24 ) , serum_starvation ( 70 ) , siRNA ( 40 , 43 , 44 ) , SNP ( 52 ) , SP600125 ( 51 ) , taxol ( 49 ) , tempol ( 56 ) , thymidine ( 32 ) , TNF ( 38 ) , topotecan ( 5 ) , U0126 ( 50 , 51 ) , urea ( 81 ) , UV ( 9 , 23 , 36 , 40 , 45 , 55 , 64 , 71 , 77 , 79 , 80 , 82 ) , virus infection ( 73 ) , wortmannin ( 43 , 56 , 74 , 80 )

Downstream Regulation
Effects of modification on p53:
activity, induced ( 7 , 19 , 30 , 52 , 58 , 67 , 68 , 75 , 77 ) , intracellular localization ( 7 , 53 , 70 ) , molecular association, regulation ( 7 , 73 ) , phosphorylation ( 2 ) , protein stabilization ( 7 , 18 , 60 , 77 )
Effects of modification on biological processes:
apoptosis, altered ( 19 , 22 , 48 ) , apoptosis, induced ( 18 , 30 , 35 , 37 , 52 , 63 , 65 , 68 , 75 , 81 ) , apoptosis, inhibited ( 60 ) , carcinogenesis, inhibited ( 18 , 22 , 37 ) , cell cycle regulation ( 58 , 65 ) , cell growth, altered ( 48 ) , cell growth, inhibited ( 37 ) , DNA repair, induced ( 6 ) , transcription, altered ( 77 ) , transcription, induced ( 7 , 30 , 65 , 80 , 81 )
Induce interaction with:
14-3-3 beta (human) ( 7 ) , NME1 (human) ( 7 ) , STRAP (human) ( 7 ) , p21Cip1 (mouse) ( 73 )

Disease / Diagnostics Relevance
Relevant diseases:
non-Hodgkin's lymphoma ( 22 )

References 

1

Nakazawa H, et al. (2017) iNOS as a Driver of Inflammation and Apoptosis in Mouse Skeletal Muscle after Burn Injury: Possible Involvement of Sirt1 S-Nitrosylation-Mediated Acetylation of p65 NF-κB and p53. PLoS One 12, e0170391
28099528   Curated Info

2

Carr MI, et al. (2016) Mdm2 Phosphorylation Regulates Its Stability and Has Contrasting Effects on Oncogene and Radiation-Induced Tumorigenesis. Cell Rep 16, 2618-29
27568562   Curated Info

3

Akeno N, Miller AL, Ma X, Wikenheiser-Brokamp KA (2015) p53 suppresses carcinoma progression by inhibiting mTOR pathway activation. Oncogene 34, 589-99
24469052   Curated Info

4

Zhao J, et al. (2015) Foxp1 Regulates the Proliferation of Hair Follicle Stem Cells in Response to Oxidative Stress during Hair Cycling. PLoS One 10, e0131674
26171970   Curated Info

5

Cam M, et al. (2014) p53/TAp63 and AKT Regulate Mammalian Target of Rapamycin Complex 1 (mTORC1) Signaling through Two Independent Parallel Pathways in the Presence of DNA Damage. J Biol Chem 289, 4083-94
24366874   Curated Info

6

Bunimovich YL, et al. (2014) Deoxycytidine Kinase Augments ATM-Mediated DNA Repair and Contributes to Radiation Resistance. PLoS One 9, e104125
25101980   Curated Info

7

Seong HA, Ha H (2012) Murine Protein Serine-threonine Kinase 38 Activates p53 Function through Ser15 Phosphorylation. J Biol Chem 287, 20797-810
22532570   Curated Info

8

Santoro R, et al. (2012) Melatonin triggers p53(Ser) phosphorylation and prevents DNA damage accumulation. Oncogene 31, 2931-42
22002314   Curated Info

9

Amable L, et al. (2011) Disruption of serine/threonine protein phosphatase 5 (PP5:PPP5c) in mice reveals a novel role for PP5 in the regulation of ultraviolet light-induced phosphorylation of serine/threonine protein kinase Chk1 (CHEK1). J Biol Chem 286, 40413-22
21921034   Curated Info

10

Assaily W, et al. (2011) ROS-mediated p53 induction of Lpin1 regulates fatty acid oxidation in response to nutritional stress. Mol Cell 44, 491-501
22055193   Curated Info

11

Mauro C, et al. (2011) NF-κB controls energy homeostasis and metabolic adaptation by upregulating mitochondrial respiration. Nat Cell Biol 13, 1272-9
21968997   Curated Info

12

Palmieri D, et al. (2011) HMGA proteins promote ATM expression and enhance cancer cell resistance to genotoxic agents. Oncogene 30, 3024-35
21339738   Curated Info

13

Altman BJ, et al. (2011) Autophagy is essential to suppress cell stress and to allow BCR-Abl-mediated leukemogenesis. Oncogene 30, 1855-67
21151168   Curated Info

14

Song L, et al. (2011) p85α mediates p53 K370 acetylation by p300 and regulates its promoter-specific transactivity in the cellular UVB response. Oncogene 30, 1360-71
21057544   Curated Info

15

Mehta S, et al. (2011) The central nervous system-restricted transcription factor Olig2 opposes p53 responses to genotoxic damage in neural progenitors and malignant glioma. Cancer Cell 19, 359-71
21397859   Curated Info

16

Lee MK, Tong WM, Wang ZQ, Sabapathy K (2011) Serine 312 phosphorylation is dispensable for wild-type p53 functions in vivo. Cell Death Differ 18, 214-21
20671749   Curated Info

17

Wang X, et al. (2011) A positive role for c-Abl in Atm and Atr activation in DNA damage response. Cell Death Differ 18, 5-15
20798688   Curated Info

18

George J, et al. (2011) Resveratrol and black tea polyphenol combination synergistically suppress mouse skin tumors growth by inhibition of activated MAPKs and p53. PLoS One 6, e23395
21887248   Curated Info

19

Mason EF, et al. (2010) Aerobic glycolysis suppresses p53 activity to provide selective protection from apoptosis upon loss of growth signals or inhibition of BCR-Abl. Cancer Res 70, 8066-76
20876800   Curated Info

20

Yang J, et al. (2010) Conditional ablation of Ikkb inhibits melanoma tumor development in mice. J Clin Invest 120, 2563-74
20530876   Curated Info

21

Nam C, Doi K, Nakayama H (2010) Etoposide induces G2/M arrest and apoptosis in neural progenitor cells via DNA damage and an ATM/p53-related pathway. Histol Histopathol 25, 485-93
20183801   Curated Info

22

Sluss HK, et al. (2010) Phosphorylation of p53 serine 18 upregulates apoptosis to suppress Myc-induced tumorigenesis. Mol Cancer Res 8, 216-22
20145032   Curated Info

23

LaGory EL, Sitailo LA, Denning MF (2010) The protein kinase Cdelta catalytic fragment is critical for maintenance of the G2/M DNA damage checkpoint. J Biol Chem 285, 1879-87
19917613   Curated Info

24

Chen P, et al. (2010) Jnk2 effects on tumor development, genetic instability and replicative stress in an oncogene-driven mouse mammary tumor model. PLoS One 5, e10443
20454618   Curated Info

25

Skorta I, et al. (2009) Imatinib mesylate induces cisplatin hypersensitivity in Bcr-Abl+ cells by differential modulation of p53 transcriptional and proapoptotic activity. Cancer Res 69, 9337-45
19934315   Curated Info

26

Calabrese V, et al. (2009) SOCS1 links cytokine signaling to p53 and senescence. Mol Cell 36, 754-67
20005840   Curated Info

27

Nogueira V, et al. (2008) Akt determines replicative senescence and oxidative or oncogenic premature senescence and sensitizes cells to oxidative apoptosis. Cancer Cell 14, 458-70
19061837   Curated Info

28

Daniel JA, et al. (2008) Multiple autophosphorylation sites are dispensable for murine ATM activation in vivo. J Cell Biol 183, 777-83
19047460   Curated Info

29

Warnock LJ, et al. (2008) Influence of tetramerisation on site-specific post-translational modifications of p53: comparison of human and murine p53 tumor suppressor protein. Cancer Biol Ther 7, 1481-9
18769132   Curated Info

30

Wang WH, Hullinger RL, Andrisani OM (2008) Hepatitis B virus X protein via the p38MAPK pathway induces E2F1 release and ATR kinase activation mediating p53 apoptosis. J Biol Chem 283, 25455-67
18606816   Curated Info

31

Hitomi M, Yang K, Stacey AW, Stacey DW (2008) Phosphorylation of cyclin D1 regulated by ATM or ATR controls cell cycle progression. Mol Cell Biol 28, 5478-93
18606783   Curated Info

32

Shields BJ, et al. (2008) DNA replication stalling attenuates tyrosine kinase signaling to suppress S phase progression. Cancer Cell 14, 166-79
18691551   Curated Info

33

Tchivilev I, et al. (2008) Identification of a protective role for protein phosphatase 1cgamma1 against oxidative stress-induced vascular smooth muscle cell apoptosis. J Biol Chem 283, 22193-205
18540044   Curated Info

34

Stracker TH, et al. (2008) Chk2 suppresses the oncogenic potential of DNA replication-associated DNA damage. Mol Cell 31, 21-32
18614044   Curated Info

35

Qin J, et al. (2008) Protein phosphatase-2A is a target of epigallocatechin-3-gallate and modulates p53-Bak apoptotic pathway. Cancer Res 68, 4150-62
18519674   Curated Info

36

Mohanty S, et al. (2008) Defective p53 engagement after the induction of DNA damage in cells deficient in topoisomerase 3beta. Proc Natl Acad Sci U S A 105, 5063-8
18367668   Curated Info

37

Armata HL, Garlick DS, Sluss HK (2007) The ataxia telangiectasia-mutated target site Ser18 is required for p53-mediated tumor suppression. Cancer Res 67, 11696-703
18089799   Curated Info

38

Li N, et al. (2007) Adaptor protein LAPF recruits phosphorylated p53 to lysosomes and triggers lysosomal destabilization in apoptosis. Cancer Res 67, 11176-85
18056442   Curated Info

39

Yang YG, Lindahl T, Barnes DE (2007) Trex1 exonuclease degrades ssDNA to prevent chronic checkpoint activation and autoimmune disease. Cell 131, 873-86
18045533   Curated Info

40

Kremer BE, Adang LA, Macara IG (2007) Septins regulate actin organization and cell-cycle arrest through nuclear accumulation of NCK mediated by SOCS7. Cell 130, 837-50
17803907   Curated Info

41

Jennings P, et al. (2007) Cyclosporine A induces senescence in renal tubular epithelial cells. Am J Physiol Renal Physiol 293, F831-8
17596534   Curated Info

42

Itoh T, et al. (2007) Ddb2 is a haploinsufficient tumor suppressor and controls spontaneous germ cell apoptosis. Hum Mol Genet 16, 1578-86
17468495   Curated Info

43

Tomimatsu N, et al. (2007) Ku70/80 modulates ATM and ATR signaling pathways in response to DNA double strand breaks. J Biol Chem 282, 10138-45
17272272   Curated Info

44

Limesand KH, Schwertfeger KL, Anderson SM (2006) MDM2 is required for suppression of apoptosis by activated Akt1 in salivary acinar cells. Mol Cell Biol 26, 8840-56
16982679   Curated Info

45

Cecchinelli B, et al. (2006) Ser58 of mouse p53 is the homologue of human Ser46 and is phosphorylated by HIPK2 in apoptosis. Cell Death Differ 13, 1994-7
16729035   Curated Info

46

Shi X, et al. (2006) CD44 is the signaling component of the macrophage migration inhibitory factor-CD74 receptor complex. Immunity 25, 595-606
17045821   Curated Info

47

Shreeram S, et al. (2006) Wip1 phosphatase modulates ATM-dependent signaling pathways. Mol Cell 23, 757-64
16949371   Curated Info

48

Chao C, Herr D, Chun J, Xu Y (2006) Ser18 and 23 phosphorylation is required for p53-dependent apoptosis and tumor suppression. EMBO J 25, 2615-22
16757976   Curated Info

49

Blanco S, Klimcakova L, Vega FM, Lazo PA (2006) The subcellular localization of vaccinia-related kinase-2 (VRK2) isoforms determines their different effect on p53 stability in tumour cell lines. FEBS J 273, 2487-504
16704422   Curated Info

50

Wu D, et al. (2006) ERK activity facilitates activation of the S-phase DNA damage checkpoint by modulating ATR function. Oncogene 25, 1153-64
16186792   Curated Info

51

Brown L, Benchimol S (2006) The involvement of MAPK signaling pathways in determining the cellular response to p53 activation: cell cycle arrest or apoptosis. J Biol Chem 281, 3832-40
16330547   Curated Info

52

Lee SJ, et al. (2006) Regulation of p53 by activated protein kinase C-delta during nitric oxide-induced dopaminergic cell death. J Biol Chem 281, 2215-24
16314418   Curated Info

53

Friis MB, et al. (2005) Cell shrinkage as a signal to apoptosis in NIH 3T3 fibroblasts. J Physiol 567, 427-43
15975986   Curated Info

54

Loeb KR, et al. (2005) A mouse model for cyclin E-dependent genetic instability and tumorigenesis. Cancer Cell 8, 35-47
16023597   Curated Info

55

Feng L, et al. (2005) Functional analysis of the roles of posttranslational modifications at the p53 C terminus in regulating p53 stability and activity. Mol Cell Biol 25, 5389-95
15964796   Curated Info

56

Erker L, et al. (2005) Cancer chemoprevention by the antioxidant tempol acts partially via the p53 tumor suppressor. Hum Mol Genet 14, 1699-708
15888486   Curated Info

57

Zhang X, Li J, Sejas DP, Pang Q (2005) The ATM/p53/p21 pathway influences cell fate decision between apoptosis and senescence in reoxygenated hematopoietic progenitor cells. J Biol Chem 280, 19635-40
15753076   Curated Info

58

Jones RG, et al. (2005) AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol Cell 18, 283-93
15866171   Curated Info

59

Warnock LJ, Raines SA, Mee TR, Milner J (2005) Role of phosphorylation in p53 acetylation and PAb421 epitope recognition in baculoviral and mammalian expressed proteins. FEBS J 272, 1669-75
15794754   Curated Info

60

Latella L, et al. (2004) Differentiation-induced radioresistance in muscle cells. Mol Cell Biol 24, 6350-61
15226436   Curated Info

61

Yung HW, Bal-Price AK, Brown GC, Tolkovsky AM (2004) Nitric oxide-induced cell death of cerebrocortical murine astrocytes is mediated through p53- and Bax-dependent pathways. J Neurochem 89, 812-21
15140181   Curated Info

62

Bar J, Cohen-Noyman E, Geiger B, Oren M (2004) Attenuation of the p53 response to DNA damage by high cell density. Oncogene 23, 2128-37
14755247   Curated Info

63

Sluss HK, Armata H, Gallant J, Jones SN (2004) Phosphorylation of serine 18 regulates distinct p53 functions in mice. Mol Cell Biol 24, 976-84
14729946   Curated Info

64

Knights CD, Liu Y, Appella E, Kulesz-Martin M (2003) Defective p53 post-translational modification required for wild type p53 inactivation in malignant epithelial cells with mdm2 gene amplification. J Biol Chem 278, 52890-900
14555661   Curated Info

65

Chao C, et al. (2003) Cell type- and promoter-specific roles of Ser18 phosphorylation in regulating p53 responses. J Biol Chem 278, 41028-33
12909629   Curated Info

66

Tirado OM, et al. (2003) The PCPH oncoprotein antagonizes the proapoptotic role of the mammalian target of rapamycin in the response of normal fibroblasts to ionizing radiation. Cancer Res 63, 6290-8
14559816   Curated Info

67

Keramaris E, et al. (2003) Ataxia telangiectasia-mutated protein can regulate p53 and neuronal death independent of Chk2 in response to DNA damage. J Biol Chem 278, 37782-9
12857758   Curated Info

68

He Z, et al. (2003) Induction of apoptosis by caffeine is mediated by the p53, Bax, and caspase 3 pathways. Cancer Res 63, 4396-401
12907610   Curated Info

69

Brown EJ, Baltimore D (2003) Essential and dispensable roles of ATR in cell cycle arrest and genome maintenance. Genes Dev 17, 615-28
12629044   Curated Info

70

Takeuchi A, et al. (2003) Heterozygosity with respect to Zfp148 causes complete loss of fetal germ cells during mouse embryogenesis. Nat Genet 33, 172-6
12524542   Curated Info

71

Zacchi P, et al. (2002) The prolyl isomerase Pin1 reveals a mechanism to control p53 functions after genotoxic insults. Nature 419, 853-7
12397362   Curated Info

72

Ewan KB, et al. (2002) Transforming growth factor-beta1 mediates cellular response to DNA damage in situ. Cancer Res 62, 5627-31
12384514   Curated Info

73

Dey D, Dahl J, Cho S, Benjamin TL (2002) Induction and bypass of p53 during productive infection by polyomavirus. J Virol 76, 9526-32
12186934   Curated Info

74

Zhu Y, et al. (2002) p38 Mitogen-activated protein kinase mediates hypoxic regulation of Mdm2 and p53 in neurons. J Biol Chem 277, 22909-14
11948180   Curated Info

75

Woo RA, et al. (2002) DNA damage-induced apoptosis requires the DNA-dependent protein kinase, and is mediated by the latent population of p53. EMBO J 21, 3000-8
12065413   Curated Info

76

Perkins EJ, et al. (2002) Sensing of intermediates in V(D)J recombination by ATM. Genes Dev 16, 159-64
11799059   Curated Info

77

Parra M, et al. (2001) p53 Phosphorylation at serine 15 is required for transcriptional induction of the plasminogen activator inhibitor-1 (PAI-1) gene by the alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine. J Biol Chem 276, 36303-10
11470783   Curated Info

78

She QB, et al. (2001) Resveratrol-induced activation of p53 and apoptosis is mediated by extracellular-signal-regulated protein kinases and p38 kinase. Cancer Res 61, 1604-10
11245472   Curated Info

79

Chao C, et al. (2000) Phosphorylation of murine p53 at ser-18 regulates the p53 responses to DNA damage. Proc Natl Acad Sci U S A 97, 11936-41
11035798   Curated Info

80

She QB, Chen N, Dong Z (2000) ERKs and p38 kinase phosphorylate p53 protein at serine 15 in response to UV radiation. J Biol Chem 275, 20444-9
10781582   Curated Info

81

Dmitrieva N, et al. (2000) Protection of renal inner medullary epithelial cells from apoptosis by hypertonic stress-induced p53 activation. J Biol Chem 275, 18243-7
10747924   Curated Info

82

Kapoor M, et al. (2000) Cooperative phosphorylation at multiple sites is required to activate p53 in response to UV radiation. Oncogene 19, 358-64
10656682   Curated Info

83

Hao M, et al. (1996) Mutation of phosphoserine 389 affects p53 function in vivo. J Biol Chem 271, 29380-5
8910602   Curated Info

84

Lees-Miller SP, et al. (1992) Human DNA-activated protein kinase phosphorylates serines 15 and 37 in the amino-terminal transactivation domain of human p53. Mol Cell Biol 12, 5041-9
1406679   Curated Info

85

Wang Y, Eckhart W (1992) Phosphorylation sites in the amino-terminal region of mouse p53. Proc Natl Acad Sci U S A 89, 4231-5
1584757   Curated Info