Ser71
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.5.9.3
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser71  -  Myc (human)

Site Information
sRRsGLCsPSyVAVt   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 449991

In vivo Characterization
Methods used to characterize site in vivo:
[32P] bio-synthetic labeling ( 17 ) , immunoprecipitation ( 4 ) , mass spectrometry ( 2 , 6 , 7 , 8 , 9 , 10 , 12 , 13 , 14 , 15 ) , mutation of modification site ( 1 , 4 , 9 , 16 , 17 , 18 ) , phospho-antibody ( 5 , 16 , 17 , 18 ) , phosphopeptide mapping ( 17 ) , western blotting ( 4 , 5 , 17 , 18 )
Disease tissue studied:
bone cancer ( 4 ) , Ewing's sarcoma ( 4 ) , breast cancer ( 7 , 8 ) , breast ductal carcinoma ( 7 ) , HER2 positive breast cancer ( 2 ) , luminal A breast cancer ( 2 ) , luminal B breast cancer ( 2 ) , breast cancer, triple negative ( 2 , 7 ) , neuroblastoma ( 9 ) , ovarian cancer ( 4 ) , prostate cancer ( 1 )
Relevant cell line - cell type - tissue:

Upstream Regulation
Regulatory protein:
ASK1 (human) ( 16 )
Putative in vivo kinases:
IKKA (human) ( 1 ) , JNK1 (human) ( 18 )
Kinases, in vitro:
IKKA (human) ( 1 ) , IKKB (human) ( 1 ) , JNK1 (human) ( 18 ) , JNK2 (human) ( 18 ) , JNK3 (human) ( 18 )
Treatments:
UV ( 18 )

Downstream Regulation
Effects of modification on Myc:
phosphorylation ( 1 , 5 ) , protein stabilization ( 1 , 16 )
Effects of modification on biological processes:
apoptosis, altered ( 18 ) , apoptosis, induced ( 16 ) , apoptosis, inhibited ( 1 ) , carcinogenesis, inhibited ( 9 ) , cell growth, induced ( 1 ) , transcription, induced ( 1 ) , transcription, inhibited ( 9 )

References 

1

Moser B, et al. (2021) The inflammatory kinase IKK╬▒ phosphorylates and stabilizes c-Myc and enhances its activity. Mol Cancer 20, 16
33461590   Curated Info

2

Mertins P, et al. (2016) Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534, 55-62
27251275   Curated Info

3

Boeing S, et al. (2016) Multiomic Analysis of the UV-Induced DNA Damage Response. Cell Rep 15, 1597-1610
27184836   Curated Info

4

Mei Z, et al. (2015) FBXO32 Targets c-Myc for Proteasomal Degradation and Inhibits c-Myc Activity. J Biol Chem 290, 16202-14
25944903   Curated Info

5

Watnick RS, et al. (2015) Thrombospondin-1 repression is mediated via distinct mechanisms in fibroblasts and epithelial cells. Oncogene 34, 2823-35
25109329   Curated Info

6

Sharma K, et al. (2014) Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep 8, 1583-94
25159151   Curated Info

7

Mertins P, et al. (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol Cell Proteomics 13, 1690-704
24719451   Curated Info

8

Yi T, et al. (2014) Quantitative phosphoproteomic analysis reveals system-wide signaling pathways downstream of SDF-1/CXCR4 in breast cancer stem cells. Proc Natl Acad Sci U S A 111, E2182-90
24782546   Curated Info

9

Wasylishen AR, et al. (2013) MYC Phosphorylation at Novel Regulatory Regions Suppresses Transforming Activity. Cancer Res 73, 6504-15
24030976   Curated Info

10

Mertins P, et al. (2013) Integrated proteomic analysis of post-translational modifications by serial enrichment. Nat Methods 10, 634-7
23749302   Curated Info

11

Shiromizu T, et al. (2013) Identification of missing proteins in the neXtProt database and unregistered phosphopeptides in the PhosphoSitePlus database as part of the Chromosome-centric Human Proteome Project. J Proteome Res 12, 2414-21
23312004   Curated Info

12

Zhou H, et al. (2013) Toward a comprehensive characterization of a human cancer cell phosphoproteome. J Proteome Res 12, 260-71
23186163   Curated Info

13

Kettenbach AN, et al. (2011) Quantitative phosphoproteomics identifies substrates and functional modules of aurora and polo-like kinase activities in mitotic cells. Sci Signal 4, rs5
21712546   Curated Info

14

Chen RQ, et al. (2009) CDC25B mediates rapamycin-induced oncogenic responses in cancer cells. Cancer Res 69, 2663-8
19276368   Curated Info

15

Dephoure N, et al. (2008) A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci U S A 105, 10762-7
18669648   Curated Info

16

Noguchi K, et al. (2001) ASK1-signaling promotes c-Myc protein stability during apoptosis. Biochem Biophys Res Commun 281, 1313-20
11243879   Curated Info

17

Sears R, et al. (2000) Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes Dev 14, 2501-14
11018017   Curated Info

18

Noguchi K, et al. (1999) Regulation of c-Myc through phosphorylation at Ser-62 and Ser-71 by c-Jun N-terminal kinase. J Biol Chem 274, 32580-7
10551811   Curated Info