Ser813
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.7.1.1
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser813  -  CFTR (human)

Site Information
DIYsRRLsQEtGLEI   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 449983

In vivo Characterization
Methods used to characterize site in vivo:
mass spectrometry ( 4 , 7 ) , mass spectrometry (in vitro) ( 3 , 12 ) , mutation of modification site ( 2 , 4 , 6 , 11 , 13 ) , phospho-antibody ( 1 , 5 , 7 , 9 ) , phosphoamino acid analysis ( 13 ) , phosphopeptide mapping ( 13 ) , western blotting ( 1 , 3 , 5 , 7 , 9 )
Disease tissue studied:
lung cancer ( 9 ) , cystic fibrosis ( 3 )
Relevant cell line - cell type - tissue:

Upstream Regulation
Regulatory protein:
CK2A1 (human) ( 3 )
Putative in vivo kinases:
AMPKA1 (human) ( 8 ) , PKACA (human) ( 7 , 13 )
Kinases, in vitro:
AMPKA1 (human) ( 8 ) , PKACA (human) ( 4 , 8 , 9 , 10 , 12 ) , PKCA (human) ( 13 )
Treatments:
cAMP_analog ( 11 ) , colforsin ( 5 , 9 , 11 , 13 ) , curcumin ( 6 ) , IBMX ( 5 , 11 , 13 ) , NKH_477 ( 6 , 7 ) , PKI ( 6 )

Downstream Regulation
Effects of modification on CFTR:
activity, induced ( 1 , 2 , 11 , 13 ) , enzymatic activity, inhibited ( 10 ) , molecular association, regulation ( 10 ) , protein conformation ( 13 )
Induce interaction with:
CFTR (human) ( 10 )

References 

1

Infield DT, et al. (2023) Real-time observation of functional specialization among phosphorylation sites in CFTR. J Gen Physiol 155
36695813   Curated Info

2

Chen JH (2020) PKA phosphorylation potentiates CFTR gating by relieving auto-inhibition on the stimulatory C terminus of the regulatory domain. J Biol Chem
32102849   Curated Info

3

Pankow S, Bamberger C, Yates JR (2019) A posttranslational modification code for CFTR maturation is altered in cystic fibrosis. Sci Signal 12
30600261   Curated Info

4

Bozoky Z, et al. (2017) Synergy of cAMP and calcium signaling pathways in CFTR regulation. Proc Natl Acad Sci U S A 114, E2086-E2095
28242698   Curated Info

5

Chin S, et al. (2017) Attenuation of Phosphorylation-dependent Activation of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) by Disease-causing Mutations at the Transmission Interface. J Biol Chem 292, 1988-1999
28003367   Curated Info

6

Wang G (2015) Molecular Basis for Fe(III)-Independent Curcumin Potentiation of Cystic Fibrosis Transmembrane Conductance Regulator Activity. Biochemistry 54, 2828-40
25867080   Curated Info

7

Pasyk S, et al. (2015) The major cystic fibrosis causing mutation exhibits defective propensity for phosphorylation. Proteomics 15, 447-61
25330774   Curated Info

8

Siwiak M, Edelman A, Zielenkiewicz P (2012) Structural models of CFTR-AMPK and CFTR-PKA interactions: R-domain flexibility is a key factor in CFTR regulation. J Mol Model 18, 83-90
21455600   Curated Info

9

Hegedus T, et al. (2009) Role of individual R domain phosphorylation sites in CFTR regulation by protein kinase A. Biochim Biophys Acta 1788, 1341-9
19328185   Curated Info

10

Howell LD, et al. (2004) Protein kinase A regulates ATP hydrolysis and dimerization by a CFTR (cystic fibrosis transmembrane conductance regulator) domain. Biochem J 378, 151-9
14602047   Curated Info

11

Baldursson O, Berger HA, Welsh MJ (2000) Contribution of R domain phosphoserines to the function of CFTR studied in Fischer rat thyroid epithelia. Am J Physiol Lung Cell Mol Physiol 279, L835-41
11053017   Curated Info

12

Neville DC, et al. (1997) Evidence for phosphorylation of serine 753 in CFTR using a novel metal-ion affinity resin and matrix-assisted laser desorption mass spectrometry. Protein Sci 6, 2436-45
9385646   Curated Info

13

Cheng SH, et al. (1991) Phosphorylation of the R domain by cAMP-dependent protein kinase regulates the CFTR chloride channel. Cell 66, 1027-36
1716180   Curated Info