Ser186
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.5.9.3
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser186  -  RRas2 (human)

Site Information
QEQECPPsPEPtRkE   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 484150

In vivo Characterization
Methods used to characterize site in vivo:
immunoprecipitation ( 2 ) , mass spectrometry ( 1 , 3 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 18 , 19 , 20 , 21 , 22 , 23 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 ) , mutation of modification site ( 2 ) , phospho-antibody ( 2 ) , western blotting ( 2 )
Disease tissue studied:
breast cancer ( 5 , 9 , 10 , 20 , 21 ) , breast ductal carcinoma ( 9 ) , HER2 positive breast cancer ( 3 ) , luminal A breast cancer ( 3 ) , luminal B breast cancer ( 3 ) , breast cancer, surrounding tissue ( 3 ) , breast cancer, triple negative ( 3 , 9 ) , cervical cancer ( 35 ) , cervical adenocarcinoma ( 35 ) , leukemia ( 43 ) , chronic myelogenous leukemia ( 43 ) , hepatocellular carcinoma, surrounding tissue ( 34 ) , lung cancer ( 14 , 21 ) , non-small cell lung cancer ( 21 ) , non-small cell lung adenocarcinoma ( 14 ) , lymphoma ( 11 ) , Burkitt's lymphoma ( 11 ) , follicular lymphoma ( 11 ) , mantle cell lymphoma ( 11 ) , neuroblastoma ( 19 ) , ovarian cancer ( 9 ) , pancreatic ductal adenocarcinoma ( 13 ) , melanoma skin cancer ( 7 )
Relevant cell line - cell type - tissue:
'muscle, skeletal' ( 27 ) , 'pancreatic, ductal'-pancreas ( 13 ) , 'stem, embryonic' ( 37 ) , 293 (epithelial) ( 39 ) , 786-O (renal) [VHL (human), transfection] ( 6 ) , 786-O (renal) ( 6 ) , A498 (renal) ( 33 ) , A549 (pulmonary) ( 15 ) , BJAB (B lymphocyte) ( 11 ) , breast ( 3 , 9 ) , BT-20 (breast cell) ( 21 ) , BT-549 (breast cell) ( 21 ) , DG75 (B lymphocyte) ( 31 ) , endothelial-aorta ( 22 ) , FL-18 (B lymphocyte) ( 11 ) , FL-318 (B lymphocyte) ( 11 ) , Flp-In T-Rex-293 (epithelial) [PRKD1 (human), genetic knockin] ( 23 ) , Flp-In T-Rex-293 (epithelial) ( 23 ) , H2009 (pulmonary) ( 21 ) , H2077 (pulmonary) ( 21 ) , H2887 (pulmonary) ( 21 ) , H322M (pulmonary) ( 21 ) , HCC1937 (breast cell) ( 21 ) , HEK293T (epithelial) ( 2 ) , HeLa (cervical) ( 2 , 8 , 18 , 25 , 29 , 30 , 41 ) , HeLa S3 (cervical) ( 26 , 35 , 40 ) , HeLa_Meta (cervical) ( 32 ) , HeLa_Pro (cervical) ( 32 ) , HeLa_Telo (cervical) ( 32 ) , hepatocyte-liver ( 34 ) , HMLER ('stem, breast cancer') [CXCR4 (human), knockdown] ( 10 ) , HMLER ('stem, breast cancer') ( 10 ) , HOP62 (pulmonary) ( 21 ) , HUES-7 ('stem, embryonic') ( 36 ) , HUES-9 ('stem, embryonic') ( 28 ) , JEKO-1 (B lymphocyte) ( 11 ) , Jurkat (T lymphocyte) ( 16 ) , K562 (erythroid) ( 18 , 43 ) , liver ( 12 ) , lung ( 14 ) , MCF-7 (breast cell) ( 5 , 21 ) , MDA-MB-231 (breast cell) ( 21 ) , MDA-MB-468 (breast cell) ( 21 ) , MV4-11 (macrophage) ( 38 ) , NB10 (neural crest) ( 19 ) , NCEB-1 (B lymphocyte) ( 11 ) , NCI-H1395 (pulmonary) ( 21 ) , NCI-H1568 (pulmonary) ( 21 ) , NCI-H157 (pulmonary) ( 21 ) , NCI-H1666 (pulmonary) ( 21 ) , NCI-H2030 (pulmonary) ( 21 ) , NCI-H322 (pulmonary) ( 21 ) , NCI-H520 (squamous) ( 21 ) , NCI-H647 (pulmonary) ( 21 ) , NPC (neural crest) ( 19 ) , OCI-ly1 (B lymphocyte) ( 11 ) , ovary ( 9 ) , PC9 (pulmonary) ( 21 ) , Raji (B lymphocyte) ( 11 ) , REC-1 (B lymphocyte) ( 11 ) , SKBr3 (breast cell) ( 20 ) , SU-DHL-4 (B lymphocyte) ( 11 ) , TERT20 ('stem, mesenchymal') ( 42 ) , Vero E6-S ('epithelial, kidney') ( 1 ) , WM239A (melanocyte) ( 7 )

Upstream Regulation
Putative in vivo kinases:
ERK1 (human) ( 2 ) , ERK2 (human) ( 2 )
Kinases, in vitro:
ERK1 (human) ( 2 )
Treatments:
MG132_withdrawal ( 32 )

Downstream Regulation
Effects of modification on biological processes:
carcinogenesis, induced ( 2 )

References 

1

Bouhaddou M, et al. (2020) The Global Phosphorylation Landscape of SARS-CoV-2 Infection. Cell
32645325   Curated Info

2

Frémin C, et al. (2016) ERK1/2-induced phosphorylation of R-Ras GTPases stimulates their oncogenic potential. Oncogene 35, 5692-5698
27086924   Curated Info

3

Mertins P, et al. (2016) Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534, 55-62
27251275   Curated Info

4

Boeing S, et al. (2016) Multiomic Analysis of the UV-Induced DNA Damage Response. Cell Rep 15, 1597-1610
27184836   Curated Info

5

Carrier M, et al. (2016) Phosphoproteome and Transcriptome of RA-Responsive and RA-Resistant Breast Cancer Cell Lines. PLoS One 11, e0157290
27362937   Curated Info

6

Malec V, Coulson JM, Urbé S, Clague MJ (2015) Combined Analyses of the VHL and Hypoxia Signaling Axes in an Isogenic Pairing of Renal Clear Cell Carcinoma Cells. J Proteome Res 14, 5263-72
26506913   Curated Info

7

Stuart SA, et al. (2015) A Phosphoproteomic Comparison of B-RAFV600E and MKK1/2 Inhibitors in Melanoma Cells. Mol Cell Proteomics 14, 1599-615
25850435   Curated Info

8

Sharma K, et al. (2014) Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep 8, 1583-94
25159151   Curated Info

9

Mertins P, et al. (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol Cell Proteomics 13, 1690-704
24719451   Curated Info

10

Yi T, et al. (2014) Quantitative phosphoproteomic analysis reveals system-wide signaling pathways downstream of SDF-1/CXCR4 in breast cancer stem cells. Proc Natl Acad Sci U S A 111, E2182-90
24782546   Curated Info

11

Rolland D, et al. (2014) Global phosphoproteomic profiling reveals distinct signatures in B-cell non-Hodgkin lymphomas. Am J Pathol 184, 1331-42
24667141   Curated Info

12

Bian Y, et al. (2014) An enzyme assisted RP-RPLC approach for in-depth analysis of human liver phosphoproteome. J Proteomics 96, 253-62
24275569   Curated Info

13

Britton D, et al. (2014) Quantification of pancreatic cancer proteome and phosphorylome: indicates molecular events likely contributing to cancer and activity of drug targets. PLoS One 9, e90948
24670416   Curated Info

14

Schweppe DK, Rigas JR, Gerber SA (2013) Quantitative phosphoproteomic profiling of human non-small cell lung cancer tumors. J Proteomics 91, 286-96
23911959   Curated Info

15

Kim JY, et al. (2013) Dissection of TBK1 signaling via phosphoproteomics in lung cancer cells. Proc Natl Acad Sci U S A 110, 12414-9
23836654   Curated Info

16

Mertins P, et al. (2013) Integrated proteomic analysis of post-translational modifications by serial enrichment. Nat Methods 10, 634-7
23749302   Curated Info

17

Shiromizu T, et al. (2013) Identification of missing proteins in the neXtProt database and unregistered phosphopeptides in the PhosphoSitePlus database as part of the Chromosome-centric Human Proteome Project. J Proteome Res 12, 2414-21
23312004   Curated Info

18

Zhou H, et al. (2013) Toward a comprehensive characterization of a human cancer cell phosphoproteome. J Proteome Res 12, 260-71
23186163   Curated Info

19

DeNardo BD, et al. (2013) Quantitative phosphoproteomic analysis identifies activation of the RET and IGF-1R/IR signaling pathways in neuroblastoma. PLoS One 8, e82513
24349301   Curated Info

20

Imami K, et al. (2012) Temporal profiling of lapatinib-suppressed phosphorylation signals in EGFR/HER2 pathways. Mol Cell Proteomics 11, 1741-57
22964224   Curated Info

21

Klammer M, et al. (2012) Phosphosignature predicts dasatinib response in non-small cell lung cancer. Mol Cell Proteomics 11, 651-68
22617229   Curated Info

22

Verano-Braga T, et al. (2012) Time-resolved quantitative phosphoproteomics: new insights into Angiotensin-(1-7) signaling networks in human endothelial cells. J Proteome Res 11, 3370-81
22497526   Curated Info

23

Franz-Wachtel M, et al. (2012) Global detection of protein kinase D-dependent phosphorylation events in nocodazole-treated human cells. Mol Cell Proteomics 11, 160-70
22496350   Curated Info

24

Beli P, et al. (2012) Proteomic Investigations Reveal a Role for RNA Processing Factor THRAP3 in the DNA Damage Response. Mol Cell 46, 212-25
22424773   Curated Info

25

Grosstessner-Hain K, et al. (2011) Quantitative phospho-proteomics to investigate the polo-like kinase 1-dependent phospho-proteome. Mol Cell Proteomics 10, M111.008540
21857030   Curated Info

26

Santamaria A, et al. (2011) The Plk1-dependent phosphoproteome of the early mitotic spindle. Mol Cell Proteomics 10, M110.004457
20860994   Curated Info

27

Zhao X, et al. (2011) Phosphoproteome analysis of functional mitochondria isolated from resting human muscle reveals extensive phosphorylation of inner membrane protein complexes and enzymes. Mol Cell Proteomics 10, M110.000299
20833797   Curated Info

28

Rigbolt KT, et al. (2011) System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation. Sci Signal 4, rs3
21406692   Curated Info

29

Kettenbach AN, et al. (2011) Quantitative phosphoproteomics identifies substrates and functional modules of aurora and polo-like kinase activities in mitotic cells. Sci Signal 4, rs5
21712546   Curated Info

30

Hegemann B, et al. (2011) Systematic phosphorylation analysis of human mitotic protein complexes. Sci Signal 4, rs12
22067460   Curated Info

31

Iliuk AB, et al. (2010) In-depth analyses of kinase-dependent tyrosine phosphoproteomes based on metal ion-functionalized soluble nanopolymers. Mol Cell Proteomics 9, 2162-72
20562096   Curated Info

32

Dulla K, et al. (2010) Quantitative site-specific phosphorylation dynamics of human protein kinases during mitotic progression. Mol Cell Proteomics 9, 1167-81
20097925   Curated Info

33

Schreiber TB, et al. (2010) An integrated phosphoproteomics work flow reveals extensive network regulation in early lysophosphatidic acid signaling. Mol Cell Proteomics 9, 1047-62
20071362   Curated Info

34

Han G, et al. (2010) Phosphoproteome analysis of human liver tissue by long-gradient nanoflow LC coupled with multiple stage MS analysis. Electrophoresis 31, 1080-9
20166139   Curated Info

35

Olsen JV, et al. (2010) Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal 3, ra3
20068231   Curated Info

36

Van Hoof D, et al. (2009) Phosphorylation dynamics during early differentiation of human embryonic stem cells. Cell Stem Cell 5, 214-26
19664995   Curated Info

37

Brill LM, et al. (2009) Phosphoproteomic analysis of human embryonic stem cells. Cell Stem Cell 5, 204-13
19664994   Curated Info

38

Oppermann FS, et al. (2009) Large-scale proteomics analysis of the human kinome. Mol Cell Proteomics 8, 1751-64
19369195   Curated Info

39

Gauci S, et al. (2009) Lys-N and trypsin cover complementary parts of the phosphoproteome in a refined SCX-based approach. Anal Chem 81, 4493-501
19413330   Curated Info

40

Daub H, et al. (2008) Kinase-selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle. Mol Cell 31, 438-48
18691976   Curated Info

41

Dephoure N, et al. (2008) A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci U S A 105, 10762-7
18669648   Curated Info

42

Thingholm TE, et al. (2008) TiO2-Based Phosphoproteomic Analysis of the Plasma Membrane and the Effects of Phosphatase Inhibitor Treatment. J Proteome Res 7, 3304-3313
18578522   Curated Info

43

Stokes M (2008) CST Curation Set: 4391; Year: 2008; Biosample/Treatment: cell line, K562/untreated; Disease: chronic myelogenous leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[STY])
Curated Info