|
Powered by Cell Signaling Technology |
Site Information |
---|
EPRLLAssPALPSSG SwissProt Entrez-Gene |
Blast this site against: NCBI SwissProt PDB |
Site Group ID: 483875 |
In vivo Characterization | |
---|---|
Methods used to characterize site in vivo: | |
Disease tissue studied: | |
Relevant cell line - cell type - tissue: |
Upstream Regulation | |
---|---|
Regulatory protein: | |
Treatments: |
References | |
---|---|
Huang H, et al. (2016) Simultaneous Enrichment of Cysteine-containing Peptides and Phosphopeptides Using a Cysteine-specific Phosphonate Adaptable Tag (CysPAT) in Combination with titanium dioxide (TiO2) Chromatography. Mol Cell Proteomics 15, 3282-3296
27281782 Curated Info |
|
Sharma K, et al. (2014) Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep 8, 1583-94
25159151 Curated Info |
|
Schweppe DK, Rigas JR, Gerber SA (2013) Quantitative phosphoproteomic profiling of human non-small cell lung cancer tumors. J Proteomics 91, 286-96
23911959 Curated Info |
|
Shiromizu T, et al. (2013) Identification of missing proteins in the neXtProt database and unregistered phosphopeptides in the PhosphoSitePlus database as part of the Chromosome-centric Human Proteome Project. J Proteome Res 12, 2414-21
23312004 Curated Info |
|
Zhou H, et al. (2013) Toward a comprehensive characterization of a human cancer cell phosphoproteome. J Proteome Res 12, 260-71
23186163 Curated Info |
|
Santamaria A, et al. (2011) The Plk1-dependent phosphoproteome of the early mitotic spindle. Mol Cell Proteomics 10, M110.004457
20860994 Curated Info |
|
Kettenbach AN, et al. (2011) Quantitative phosphoproteomics identifies substrates and functional modules of aurora and polo-like kinase activities in mitotic cells. Sci Signal 4, rs5
21712546 Curated Info |
|
Olsen JV, et al. (2010) Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal 3, ra3
20068231 Curated Info |
|
Gauci S, et al. (2009) Lys-N and trypsin cover complementary parts of the phosphoproteome in a refined SCX-based approach. Anal Chem 81, 4493-501
19413330 Curated Info |
|
Chen RQ, et al. (2009) CDC25B mediates rapamycin-induced oncogenic responses in cancer cells. Cancer Res 69, 2663-8
19276368 Curated Info |
|
Mayya V, et al. (2009) Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions. Sci Signal 2, ra46
19690332 Curated Info |
|
Daub H, et al. (2008) Kinase-selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle. Mol Cell 31, 438-48
18691976 Curated Info |
|
Dephoure N, et al. (2008) A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci U S A 105, 10762-7
18669648 Curated Info |
|
Yu LR, et al. (2007) Improved titanium dioxide enrichment of phosphopeptides from HeLa cells and high confident phosphopeptide identification by cross-validation of MS/MS and MS/MS/MS spectra. J Proteome Res 6, 4150-62
17924679 Curated Info |
|
Beausoleil SA, et al. (2006) A probability-based approach for high-throughput protein phosphorylation analysis and site localization. Nat Biotechnol 24, 1285-92
16964243 Curated Info |