Ser379
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.5.9.3
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser379  -  hnRNP K (human)

Site Information
syAGGrGsyGDLGGP   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 483629

In vivo Characterization
Methods used to characterize site in vivo:
immunoassay ( 1 ) , mass spectrometry ( 2 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 ) , mutation of modification site ( 1 ) , phospho-antibody ( 1 ) , western blotting ( 1 )
Disease tissue studied:
bone cancer ( 1 , 27 ) , osteosarcoma ( 27 ) , breast cancer ( 1 , 7 , 12 ) , breast ductal carcinoma ( 7 ) , HER2 positive breast cancer ( 2 ) , luminal A breast cancer ( 2 ) , luminal B breast cancer ( 2 ) , breast cancer, triple negative ( 2 , 7 ) , cervical cancer ( 28 ) , cervical adenocarcinoma ( 28 ) , leukemia ( 16 ) , acute myelogenous leukemia ( 16 ) , acute erythroid leukemias, including erythroleukemia (M6a) and very rare pure erythroid leukemia (M6b) ( 11 ) , acute megakaryoblastic leukemia (M7) ( 11 ) , acute monoblastic leukemia (M5a) or acute monocytic leukemia (M5b) ( 11 ) , acute myeloblastic leukemia, with granulocytic maturation (M2) ( 11 ) , acute myeloblastic leukemia, without maturation (M1) ( 11 ) , hepatocellular carcinoma, surrounding tissue ( 26 ) , lung cancer ( 5 , 12 , 20 , 22 ) , non-small cell lung cancer ( 12 ) , non-small cell lung adenocarcinoma ( 5 ) , B cell lymphoma ( 11 ) , non-Hodgkin's lymphoma ( 11 ) , multiple myeloma ( 11 , 25 ) , melanoma skin cancer ( 4 )
Relevant cell line - cell type - tissue:
'muscle, skeletal' ( 17 ) , 293 (epithelial) [ADRB1 (human), no information, overexpresses human beta1-adrenergic (ß1AR- HEK293)] ( 34 ) , 293 (epithelial) ( 1 ) , 293E (epithelial) ( 18 ) , A549 (pulmonary) ( 20 ) , AML-193 (monocyte) ( 11 ) , B lymphocyte-blood ( 25 ) , breast ( 2 , 7 ) , BT-549 (breast cell) ( 12 ) , Calu 6 (pulmonary) ( 12 ) , CL1-0 (pulmonary) ( 22 ) , CL1-1 (pulmonary) ( 22 ) , CL1-2 (pulmonary) ( 22 ) , CL1-5 (pulmonary) ( 22 ) , CMK (megakaryoblast) ( 11 ) , CTS (myeloid) ( 11 ) , DG75 (B lymphocyte) ( 23 ) , DOHH2 ('B lymphocyte, precursor') ( 11 ) , H2009 (pulmonary) ( 12 ) , H2077 (pulmonary) ( 12 ) , H2887 (pulmonary) ( 12 ) , H322M (pulmonary) ( 12 ) , HCC1359 (pulmonary) ( 12 ) , HCC1937 (breast cell) ( 12 ) , HCC366 (pulmonary) ( 12 ) , HCC4006 (pulmonary) ( 12 ) , HCC78 (pulmonary) ( 12 ) , HEL (erythroid) ( 11 ) , HeLa (cervical) ( 6 , 10 , 29 , 31 , 32 , 34 , 35 , 37 ) , HeLa S3 (cervical) ( 28 ) , HeLa_Meta (cervical) ( 24 ) , HeLa_Pro (cervical) ( 24 ) , HeLa_Telo (cervical) ( 24 ) , hepatocyte-liver ( 26 ) , HOP62 (pulmonary) ( 12 ) , HUES-7 ('stem, embryonic') ( 30 ) , HUES-9 ('stem, embryonic') ( 21 ) , Jurkat (T lymphocyte) ( 9 , 13 , 19 ) , K562 (erythroid) ( 10 , 29 , 33 ) , Kasumi-1 (myeloid) ( 11 ) , KG-1 (myeloid) ( 11 , 16 ) , LOU-NH91 (squamous) ( 12 ) , MCF-7 (breast cell) ( 12 ) , MDA-MB-231 (breast cell) ( 1 , 12 ) , MV4-11 (macrophage) ( 11 ) , NCI-H1568 (pulmonary) ( 12 ) , NCI-H1648 (pulmonary) ( 12 ) , NCI-H322 (pulmonary) ( 12 ) , NCI-H460 (pulmonary) ( 12 ) , NCI-H647 (pulmonary) ( 12 ) , OPM-2 (plasma cell) ( 11 ) , P31/FUJ (erythroid) ( 11 ) , PC9 (pulmonary) ( 5 ) , RL ('B lymphocyte, precursor') ( 11 ) , RPMI-8266 (plasma cell) ( 11 ) , SH-SY5Y (neural crest) [LRRK2 (human), transfection, over-expression of LRRK2(G2019S)] ( 8 ) , SU-DHL-6 (B lymphocyte) ( 11 ) , T lymphocyte-blood ( 14 ) , U266 (plasma cell) ( 11 ) , U2OS (bone cell) [GR (human)] ( 36 ) , U2OS (bone cell) ( 1 , 27 ) , WM239A (melanocyte) ( 4 )

Upstream Regulation
Putative in vivo kinases:
AurA (human) ( 1 )
Kinases, in vitro:
AurA (human) ( 1 )
Treatments:
anti-CD3 ( 14 ) , ischemia ( 7 ) , metastatic potential ( 22 ) , nocodazole ( 1 , 28 ) , U0126 ( 29 )

Downstream Regulation
Effects of modification on biological processes:
cell cycle regulation ( 1 ) , cell motility, inhibited ( 1 )

References 

1

Tsai HY, et al. (2019) hnRNPK S379 phosphorylation participates in migration regulation of triple negative MDA-MB-231 cells. Sci Rep 9, 7611
31110205   Curated Info

2

Mertins P, et al. (2016) Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534, 55-62
27251275   Curated Info

3

Boeing S, et al. (2016) Multiomic Analysis of the UV-Induced DNA Damage Response. Cell Rep 15, 1597-1610
27184836   Curated Info

4

Stuart SA, et al. (2015) A Phosphoproteomic Comparison of B-RAFV600E and MKK1/2 Inhibitors in Melanoma Cells. Mol Cell Proteomics 14, 1599-615
25850435   Curated Info

5

Tsai CF, et al. (2015) Large-scale determination of absolute phosphorylation stoichiometries in human cells by motif-targeting quantitative proteomics. Nat Commun 6, 6622
25814448   Curated Info

6

Sharma K, et al. (2014) Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep 8, 1583-94
25159151   Curated Info

7

Mertins P, et al. (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol Cell Proteomics 13, 1690-704
24719451   Curated Info

8

Luerman GC, et al. (2014) Phosphoproteomic evaluation of pharmacological inhibition of leucine-rich repeat kinase 2 reveals significant off-target effects of LRRK-2-IN-1. J Neurochem 128, 561-76
24117733   Curated Info

9

Mertins P, et al. (2013) Integrated proteomic analysis of post-translational modifications by serial enrichment. Nat Methods 10, 634-7
23749302   Curated Info

10

Zhou H, et al. (2013) Toward a comprehensive characterization of a human cancer cell phosphoproteome. J Proteome Res 12, 260-71
23186163   Curated Info

11

Casado P, et al. (2013) Phosphoproteomics data classify hematological cancer cell lines according to tumor type and sensitivity to kinase inhibitors. Genome Biol 14, R37
23628362   Curated Info

12

Klammer M, et al. (2012) Phosphosignature predicts dasatinib response in non-small cell lung cancer. Mol Cell Proteomics 11, 651-68
22617229   Curated Info

13

Zhou J (2012) CST Curation Set: 14432; Year: 2012; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[STY] Antibodies Used to Purify Peptides prior to LCMS: Phospho-Tyrosine (P-Tyr-1000) Rabbit mAb Cat#: 8954, Phospho-Tyrosine Rabbit mAb (p-Tyr-1000) Immunoaffinity Beads Cat#: 8876
Curated Info

14

Ruperez P, Gago-Martinez A, Burlingame AL, Oses-Prieto JA (2012) Quantitative phosphoproteomic analysis reveals a role for serine and threonine kinases in the cytoskeletal reorganization in early T cell receptor activation in human primary T cells. Mol Cell Proteomics 11, 171-86
22499768   Curated Info

15

Beli P, et al. (2012) Proteomic Investigations Reveal a Role for RNA Processing Factor THRAP3 in the DNA Damage Response. Mol Cell 46, 212-25
22424773   Curated Info

16

Weber C, Schreiber TB, Daub H (2012) Dual phosphoproteomics and chemical proteomics analysis of erlotinib and gefitinib interference in acute myeloid leukemia cells. J Proteomics 75, 1343-56
22115753   Curated Info

17

Lundby A, et al. (2012) Quantitative maps of protein phosphorylation sites across 14 different rat organs and tissues. Nat Commun 3, 876
22673903   Curated Info

18

Hsu PP, et al. (2011) The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332, 1317-22
21659604   Curated Info

19

Guo A (2011) CST Curation Set: 11285; Year: 2011; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: RXXp[ST] Antibodies Used to Purify Peptides prior to LCMS: Phospho-Akt Substrate (RXRXXS/T) (110B7) Rabbit mAb Cat#: 9614, PTMScan(R) Phospho-Akt Substrate Motif (RXXS*/T*) Immunoaffinity Beads Cat#: 1978
Curated Info

20

Yu G, et al. (2011) Phosphoproteome profile of human lung cancer cell line A549. Mol Biosyst 7, 472-9
21060948   Curated Info

21

Rigbolt KT, et al. (2011) System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation. Sci Signal 4, rs3
21406692   Curated Info

22

Wang YT, et al. (2010) An informatics-assisted label-free quantitation strategy that depicts phosphoproteomic profiles in lung cancer cell invasion. J Proteome Res 9, 5582-97
20815410   Curated Info

23

Iliuk AB, et al. (2010) In-depth analyses of kinase-dependent tyrosine phosphoproteomes based on metal ion-functionalized soluble nanopolymers. Mol Cell Proteomics 9, 2162-72
20562096   Curated Info

24

Dulla K, et al. (2010) Quantitative site-specific phosphorylation dynamics of human protein kinases during mitotic progression. Mol Cell Proteomics 9, 1167-81
20097925   Curated Info

25

Ge F, et al. (2010) Phosphoproteomic analysis of primary human multiple myeloma cells. J Proteomics 73, 1381-90
20230923   Curated Info

26

Han G, et al. (2010) Phosphoproteome analysis of human liver tissue by long-gradient nanoflow LC coupled with multiple stage MS analysis. Electrophoresis 31, 1080-9
20166139   Curated Info

27

Raijmakers R, et al. (2010) Exploring the human leukocyte phosphoproteome using a microfluidic reversed-phase-TiO2-reversed-phase high-performance liquid chromatography phosphochip coupled to a quadrupole time-of-flight mass spectrometer. Anal Chem 82, 824-32
20058876   Curated Info

28

Olsen JV, et al. (2010) Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal 3, ra3
20068231   Curated Info

29

Pan C, Olsen JV, Daub H, Mann M (2009) Global effects of kinase inhibitors on signaling networks revealed by quantitative phosphoproteomics. Mol Cell Proteomics 8, 2796-808
19651622   Curated Info

30

Van Hoof D, et al. (2009) Phosphorylation dynamics during early differentiation of human embryonic stem cells. Cell Stem Cell 5, 214-26
19664995   Curated Info

31

Chen Y, et al. (2009) Combined integrin phosphoproteomic analyses and small interfering RNA--based functional screening identify key regulators for cancer cell adhesion and migration. Cancer Res 69, 3713-20
19351860   Curated Info

32

Chen RQ, et al. (2009) CDC25B mediates rapamycin-induced oncogenic responses in cancer cells. Cancer Res 69, 2663-8
19276368   Curated Info

33

Stokes M (2008) CST Curation Set: 4605; Year: 2008; Biosample/Treatment: cell line, K562/untreated; Disease: chronic myelogenous leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[STY])
Curated Info

34

Ruse CI, et al. (2008) Motif-specific sampling of phosphoproteomes. J Proteome Res 7, 2140-50
18452278   Curated Info

35

Yu LR, et al. (2007) Improved titanium dioxide enrichment of phosphopeptides from HeLa cells and high confident phosphopeptide identification by cross-validation of MS/MS and MS/MS/MS spectra. J Proteome Res 6, 4150-62
17924679   Curated Info

36

Lowery DM, et al. (2007) Proteomic screen defines the Polo-box domain interactome and identifies Rock2 as a Plk1 substrate. EMBO J 26, 2262-73
17446864   Curated Info

37

Beausoleil SA, et al. (2006) A probability-based approach for high-throughput protein phosphorylation analysis and site localization. Nat Biotechnol 24, 1285-92
16964243   Curated Info