Ser64
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.6.0.2
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser64  -  MCL1 (human)

Site Information
IGGSAGAsPPStLtP   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 479431

In vivo Characterization
Methods used to characterize site in vivo:
[32P] ATP in vitro ( 4 , 8 ) , immunoprecipitation ( 1 , 2 , 3 , 5 , 7 , 8 ) , mass spectrometry ( 4 , 5 , 6 , 7 , 8 ) , mutation of modification site ( 2 , 3 , 4 , 5 , 7 , 8 ) , phospho-antibody ( 1 , 2 , 4 , 7 , 8 ) , western blotting ( 1 , 2 , 3 , 4 , 7 , 8 )
Disease tissue studied:
bone cancer ( 7 ) , breast cancer ( 2 ) , breast adenocarcinoma ( 2 ) , breast cancer, triple negative ( 2 ) , colorectal cancer ( 5 ) , colorectal carcinoma ( 5 ) , lung cancer ( 2 , 3 ) , non-small cell lung cancer ( 3 ) , small-cell lung cancer ( 2 )
Relevant cell line - cell type - tissue:

Upstream Regulation
Regulatory protein:
NOXA (human) ( 2 )
Putative in vivo kinases:
CDK2 (human) ( 2 , 3 )
Kinases, in vitro:
CDK1 (human) ( 8 ) , CDK2 (human) ( 2 , 8 ) , JNK1 (human) ( 8 )
Treatments:
aphidicolin ( 8 ) , Cdk2/5_inhibitor ( 8 ) , cisplatin ( 2 ) , GSK-3_inhibitor_X ( 8 ) , nocodazole ( 7 , 8 ) , olomoucine ( 8 ) , PD98059 ( 8 ) , purvalanol ( 7 ) , SB203580 ( 7 ) , seliciclib ( 7 , 8 ) , SP600125 ( 7 , 8 ) , SU9516 ( 8 ) , TRAIL ( 8 ) , U0126 ( 7 , 8 ) , vinblastine ( 1 )

Downstream Regulation
Effects of modification on MCL1:
molecular association, regulation ( 3 , 8 ) , protein degradation ( 2 ) , protein stabilization ( 1 ) , ubiquitination ( 2 )
Effects of modification on biological processes:
apoptosis, induced ( 2 ) , apoptosis, inhibited ( 3 , 8 )
Induce interaction with:
BIM (human) ( 3 , 8 ) , NOXA1 (human) ( 8 )

References 

1

Chu R, et al. (2016) Mitotic arrest-induced phosphorylation of Mcl-1 revisited using two-dimensional gel electrophoresis and phosphoproteomics: nine phosphorylation sites identified. Oncotarget 7, 78958-78970
27738316   Curated Info

2

Nakajima W, et al. (2016) DNA damaging agent-induced apoptosis is regulated by MCL-1 phosphorylation and degradation mediated by the Noxa/MCL-1/CDK2 complex. Oncotarget 7, 36353-36365
27166195   Curated Info

3

Choudhary GS, et al. (2015) Cyclin E/Cdk2-dependent phosphorylation of Mcl-1 determines its stability and cellular sensitivity to BH3 mimetics. Oncotarget 6, 16912-25
26219338   Curated Info

4

Inuzuka H, et al. (2011) SCF(FBW7) regulates cellular apoptosis by targeting MCL1 for ubiquitylation and destruction. Nature 471, 104-9
21368833   Curated Info

5

Wertz IE, et al. (2011) Sensitivity to antitubulin chemotherapeutics is regulated by MCL1 and FBW7. Nature 471, 110-4
21368834   Curated Info

6

Kettenbach AN, et al. (2011) Quantitative phosphoproteomics identifies substrates and functional modules of aurora and polo-like kinase activities in mitotic cells. Sci Signal 4, rs5
21712546   Curated Info

7

Harley ME, Allan LA, Sanderson HS, Clarke PR (2010) Phosphorylation of Mcl-1 by CDK1-cyclin B1 initiates its Cdc20-dependent destruction during mitotic arrest. EMBO J 29, 2407-20
20526282   Curated Info

8

Kobayashi S, et al. (2007) Serine 64 phosphorylation enhances the antiapoptotic function of Mcl-1. J Biol Chem 282, 18407-17
17463001   Curated Info