Ser81
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.5.9.3
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser81  -  DYNC1I2 (mouse)

Site Information
PIVPPPMsPssKsVs   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 449148

In vivo Characterization
Methods used to characterize site in vivo:
electrophoretic mobility shift ( 1 ) , mass spectrometry ( 2 , 3 , 4 , 5 , 6 , 7 , 8 , 10 , 11 , 12 ) , mass spectrometry (in vitro) ( 9 ) , mutation of modification site ( 1 )
Disease tissue studied:
melanoma skin cancer ( 12 )
Relevant cell line - cell type - tissue:
'3T3-L1, differentiated' (adipocyte) ( 2 ) , 'brain, cerebral cortex' ( 1 ) , 'neuron, cortical'-brain ( 1 ) , 293 (epithelial) ( 1 ) , brain ( 11 ) , C2C12 (myoblast) ( 7 ) , COS7 (fibroblast) ( 1 ) , liver ( 5 ) , liver [leptin (mouse), homozygous knockout] ( 5 ) , macrophage-peritoneum ( 4 ) , MEF (fibroblast) ( 8 ) , PC-12 (chromaffin) [TrkA (rat), transfection] ( 6 ) , PC-12 (chromaffin) ( 6 ) , skin [mGluR1 (mouse), transgenic, TG mutant mice] ( 12 ) , stromal ( 3 ) , testis ( 10 )

Upstream Regulation
Regulatory protein:
leptin (mouse) ( 5 )
Putative in vivo kinases:
AMPKA1 (human) ( 1 ) , AMPKA2 (human) ( 1 )
Kinases, in vitro:
ERK2 (mouse) ( 9 )
Treatments:
A-769662 ( 1 ) , acadesine ( 1 ) , compound_C ( 1 ) , PDGF ( 6 ) , siRNA ( 1 )

Downstream Regulation
Effects of modification on biological processes:
cell motility, induced ( 1 )

References 

1

Naito Y, Asada N, Nguyen MD, Sanada K (2020) AMP-activated protein kinase regulates cytoplasmic dynein behavior and contributes to neuronal migration in the developing neocortex. Development
32554528   Curated Info

2

Parker BL, et al. (2015) Targeted phosphoproteomics of insulin signaling using data-independent acquisition mass spectrometry. Sci Signal 8, rs6
26060331   Curated Info

3

Mertins P, et al. (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol Cell Proteomics 13, 1690-704
24719451   Curated Info

4

Wu X, et al. (2012) Investigation of receptor interacting protein (RIP3)-dependent protein phosphorylation by quantitative phosphoproteomics. Mol Cell Proteomics 11, 1640-51
22942356   Curated Info

5

Grimsrud PA, et al. (2012) A quantitative map of the liver mitochondrial phosphoproteome reveals posttranslational control of ketogenesis. Cell Metab 16, 672-83
23140645   Curated Info

6

Biarc J, Chalkley RJ, Burlingame AL, Bradshaw RA (2012) The induction of serine/threonine protein phosphorylations by a PDGFR/TrkA chimera in stably transfected PC12 cells. Mol Cell Proteomics 11, 15-30
22027198   Curated Info

7

Knight JD, et al. (2012) A novel whole-cell lysate kinase assay identifies substrates of the p38 MAPK in differentiating myoblasts. Skelet Muscle 2, 5
22394512   Curated Info

8

Yu Y, et al. (2011) Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science 332, 1322-6
21659605   Curated Info

9

Carlson SM, et al. (2011) Large-Scale Discovery of ERK2 Substrates Identifies ERK-Mediated Transcriptional Regulation by ETV3. Sci Signal 4, rs11
22028470   Curated Info

10

Huttlin EL, et al. (2010) A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 143, 1174-89
21183079   Curated Info

11

Wiƛniewski JR, et al. (2010) Brain phosphoproteome obtained by a FASP-based method reveals plasma membrane protein topology. J Proteome Res 9, 3280-9
20415495   Curated Info

12

Zanivan S, et al. (2008) Solid tumor proteome and phosphoproteome analysis by high resolution mass spectrometry. J Proteome Res 7, 5314-26
19367708   Curated Info