Ser546
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.7.1.1
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser546  -  SUZ12 (human)

Site Information
sMsEFLEsEDGEVEQ   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 449173

In vivo Characterization
Methods used to characterize site in vivo:
immunoprecipitation ( 7 ) , mass spectrometry ( 1 , 2 , 3 , 4 , 6 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 ) , mutation of modification site ( 7 ) , phospho-antibody ( 7 ) , western blotting ( 7 )
Disease tissue studied:
breast cancer ( 6 , 11 , 17 ) , breast ductal carcinoma ( 11 ) , HER2 positive breast cancer ( 4 ) , luminal A breast cancer ( 4 ) , luminal B breast cancer ( 4 ) , breast cancer, surrounding tissue ( 4 ) , breast cancer, triple negative ( 4 , 11 ) , cervical cancer ( 29 ) , cervical adenocarcinoma ( 29 ) , leukemia ( 21 , 37 ) , acute myelogenous leukemia ( 21 ) , chronic myelogenous leukemia ( 37 ) , lung cancer ( 9 , 13 , 17 , 26 ) , non-small cell lung cancer ( 17 ) , non-small cell lung adenocarcinoma ( 9 , 13 ) , lymphoma ( 12 ) , Burkitt's lymphoma ( 12 ) , follicular lymphoma ( 12 ) , mantle cell lymphoma ( 12 ) , ovarian cancer ( 11 ) , melanoma skin cancer ( 8 )
Relevant cell line - cell type - tissue:
293 (epithelial) [ADRB1 (human), no information, overexpresses human beta1-adrenergic (ß1AR- HEK293)] ( 38 ) , 293 (epithelial) [AT1 (human), transfection] ( 27 ) , 293 (epithelial) ( 32 ) , 293E (epithelial) ( 22 ) , A549 (pulmonary) ( 14 ) , BJAB (B lymphocyte) ( 12 ) , breast ( 4 , 11 ) , BT-20 (breast cell) ( 17 ) , BT-474 (breast cell) ( 6 ) , BT-549 (breast cell) ( 17 ) , Calu 6 (pulmonary) ( 17 ) , CL1-0 (pulmonary) ( 26 ) , CL1-1 (pulmonary) ( 26 ) , CL1-2 (pulmonary) ( 26 ) , CL1-5 (pulmonary) ( 26 ) , endothelial-aorta ( 18 ) , FL-18 (B lymphocyte) ( 12 ) , FL-318 (B lymphocyte) ( 12 ) , Flp-In T-Rex-293 (epithelial) [PRKD1 (human), genetic knockin] ( 19 ) , Flp-In T-Rex-293 (epithelial) ( 19 ) , GM00130 (B lymphocyte) ( 28 ) , H2009 (pulmonary) ( 17 ) , H2077 (pulmonary) ( 17 ) , H2887 (pulmonary) ( 17 ) , H322M (pulmonary) ( 17 ) , HCC2279 (pulmonary) ( 17 ) , HCC366 (pulmonary) ( 17 ) , HCC78 (pulmonary) ( 17 ) , HCC827 (pulmonary) ( 17 ) , HEK293T (epithelial) ( 7 ) , HeLa (cervical) ( 3 , 10 , 16 , 25 , 33 , 34 , 36 , 38 , 39 , 40 ) , HeLa S3 (cervical) [PLK1 (human), knockdown, Tet-inducible PLK1 siRNA] ( 23 ) , HeLa S3 (cervical) ( 23 , 29 ) , HOP62 (pulmonary) ( 17 ) , HUES-7 ('stem, embryonic') ( 31 ) , HUES-9 ('stem, embryonic') ( 24 ) , JHOC-5 ( 1 ) , Jurkat (T lymphocyte) ( 15 , 35 ) , K562 (erythroid) ( 16 , 30 , 37 ) , KG-1 (myeloid) ( 21 ) , LCLC-103H (pulmonary) ( 17 ) , LOU-NH91 (squamous) ( 17 ) , lung ( 13 ) , MCF-7 (breast cell) ( 6 ) , MDA-MB-231 (breast cell) ( 17 ) , MDA-MB-468 (breast cell) ( 17 ) , NCEB-1 (B lymphocyte) ( 12 ) , NCI-H1395 (pulmonary) ( 17 ) , NCI-H1568 (pulmonary) ( 17 ) , NCI-H157 (pulmonary) ( 17 ) , NCI-H1648 (pulmonary) ( 17 ) , NCI-H1666 (pulmonary) ( 17 ) , NCI-H2030 (pulmonary) ( 17 ) , NCI-H2172 (pulmonary) ( 17 ) , NCI-H322 (pulmonary) ( 17 ) , NCI-H460 (pulmonary) ( 17 ) , NCI-H520 (squamous) ( 17 ) , NCI-H647 (pulmonary) ( 17 ) , ovary ( 11 ) , PC9 (pulmonary) ( 9 , 17 ) , PC9-IR (pulmonary) ( 9 ) , Raji (B lymphocyte) ( 12 ) , RAMOS (B lymphocyte) ( 12 ) , SU-DHL-4 (B lymphocyte) ( 12 ) , UPN-1 (B lymphocyte) ( 12 ) , Vero E6-S ('epithelial, kidney') ( 2 ) , WM239A (melanocyte) ( 8 )

Upstream Regulation
Regulatory protein:
SMARCA4 (human) ( 1 )
Kinases, in vitro:
PLK1 (human) ( 7 )
Treatments:
BI2536 ( 25 ) , nocodazole ( 29 )

Downstream Regulation
Effects of modification on SUZ12:
molecular association, regulation ( 7 ) , ubiquitination ( 7 )
Inhibit interaction with:
EZH2 (human) ( 7 )

References 

1

Kimura A, et al. (2021) Phosphorylation of Ser1452 on BRG1 inhibits the function of the SWI/SNF complex in chromatin activation. J Proteomics 247, 104319
34237461   Curated Info

2

Bouhaddou M, et al. (2020) The Global Phosphorylation Landscape of SARS-CoV-2 Infection. Cell 182
32645325   Curated Info

3

Huang H, et al. (2016) Simultaneous Enrichment of Cysteine-containing Peptides and Phosphopeptides Using a Cysteine-specific Phosphonate Adaptable Tag (CysPAT) in Combination with titanium dioxide (TiO2) Chromatography. Mol Cell Proteomics 15, 3282-3296
27281782   Curated Info

4

Mertins P, et al. (2016) Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534, 55-62
27251275   Curated Info

5

Boeing S, et al. (2016) Multiomic Analysis of the UV-Induced DNA Damage Response. Cell Rep 15, 1597-1610
27184836   Curated Info

6

Carrier M, et al. (2016) Phosphoproteome and Transcriptome of RA-Responsive and RA-Resistant Breast Cancer Cell Lines. PLoS One 11, e0157290
27362937   Curated Info

7

Zhang H, et al. (2015) PLK1 and HOTAIR Accelerate Proteasomal Degradation of SUZ12 and ZNF198 during Hepatitis B Virus-Induced Liver Carcinogenesis. Cancer Res 75, 2363-74
25855382   Curated Info

8

Stuart SA, et al. (2015) A Phosphoproteomic Comparison of B-RAFV600E and MKK1/2 Inhibitors in Melanoma Cells. Mol Cell Proteomics 14, 1599-615
25850435   Curated Info

9

Tsai CF, et al. (2015) Large-scale determination of absolute phosphorylation stoichiometries in human cells by motif-targeting quantitative proteomics. Nat Commun 6, 6622
25814448   Curated Info

10

Sharma K, et al. (2014) Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep 8, 1583-94
25159151   Curated Info

11

Mertins P, et al. (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol Cell Proteomics 13, 1690-704
24719451   Curated Info

12

Rolland D, et al. (2014) Global phosphoproteomic profiling reveals distinct signatures in B-cell non-Hodgkin lymphomas. Am J Pathol 184, 1331-42
24667141   Curated Info

13

Schweppe DK, Rigas JR, Gerber SA (2013) Quantitative phosphoproteomic profiling of human non-small cell lung cancer tumors. J Proteomics 91, 286-96
23911959   Curated Info

14

Kim JY, et al. (2013) Dissection of TBK1 signaling via phosphoproteomics in lung cancer cells. Proc Natl Acad Sci U S A 110, 12414-9
23836654   Curated Info

15

Mertins P, et al. (2013) Integrated proteomic analysis of post-translational modifications by serial enrichment. Nat Methods 10, 634-7
23749302   Curated Info

16

Zhou H, et al. (2013) Toward a comprehensive characterization of a human cancer cell phosphoproteome. J Proteome Res 12, 260-71
23186163   Curated Info

17

Klammer M, et al. (2012) Phosphosignature predicts dasatinib response in non-small cell lung cancer. Mol Cell Proteomics 11, 651-68
22617229   Curated Info

18

Verano-Braga T, et al. (2012) Time-resolved quantitative phosphoproteomics: new insights into Angiotensin-(1-7) signaling networks in human endothelial cells. J Proteome Res 11, 3370-81
22497526   Curated Info

19

Franz-Wachtel M, et al. (2012) Global detection of protein kinase D-dependent phosphorylation events in nocodazole-treated human cells. Mol Cell Proteomics 11, 160-70
22496350   Curated Info

20

Beli P, et al. (2012) Proteomic Investigations Reveal a Role for RNA Processing Factor THRAP3 in the DNA Damage Response. Mol Cell 46, 212-25
22424773   Curated Info

21

Weber C, Schreiber TB, Daub H (2012) Dual phosphoproteomics and chemical proteomics analysis of erlotinib and gefitinib interference in acute myeloid leukemia cells. J Proteomics 75, 1343-56
22115753   Curated Info

22

Hsu PP, et al. (2011) The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332, 1317-22
21659604   Curated Info

23

Santamaria A, et al. (2011) The Plk1-dependent phosphoproteome of the early mitotic spindle. Mol Cell Proteomics 10, M110.004457
20860994   Curated Info

24

Rigbolt KT, et al. (2011) System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation. Sci Signal 4, rs3
21406692   Curated Info

25

Kettenbach AN, et al. (2011) Quantitative phosphoproteomics identifies substrates and functional modules of aurora and polo-like kinase activities in mitotic cells. Sci Signal 4, rs5
21712546   Curated Info

26

Wang YT, et al. (2010) An informatics-assisted label-free quantitation strategy that depicts phosphoproteomic profiles in lung cancer cell invasion. J Proteome Res 9, 5582-97
20815410   Curated Info

27

Xiao K, et al. (2010) Global phosphorylation analysis of beta-arrestin-mediated signaling downstream of a seven transmembrane receptor (7TMR). Proc Natl Acad Sci U S A 107, 15299-304
20686112   Curated Info

28

Bennetzen MV, et al. (2010) Site-specific phosphorylation dynamics of the nuclear proteome during the DNA damage response. Mol Cell Proteomics 9, 1314-23
20164059   Curated Info

29

Olsen JV, et al. (2010) Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal 3, ra3
20068231   Curated Info

30

Pan C, Olsen JV, Daub H, Mann M (2009) Global effects of kinase inhibitors on signaling networks revealed by quantitative phosphoproteomics. Mol Cell Proteomics 8, 2796-808
19651622   Curated Info

31

Van Hoof D, et al. (2009) Phosphorylation dynamics during early differentiation of human embryonic stem cells. Cell Stem Cell 5, 214-26
19664995   Curated Info

32

Gauci S, et al. (2009) Lys-N and trypsin cover complementary parts of the phosphoproteome in a refined SCX-based approach. Anal Chem 81, 4493-501
19413330   Curated Info

33

Chen Y, et al. (2009) Combined integrin phosphoproteomic analyses and small interfering RNA--based functional screening identify key regulators for cancer cell adhesion and migration. Cancer Res 69, 3713-20
19351860   Curated Info

34

Chen RQ, et al. (2009) CDC25B mediates rapamycin-induced oncogenic responses in cancer cells. Cancer Res 69, 2663-8
19276368   Curated Info

35

Mayya V, et al. (2009) Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions. Sci Signal 2, ra46
19690332   Curated Info

36

Dephoure N, et al. (2008) A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci U S A 105, 10762-7
18669648   Curated Info

37

Stokes M (2008) CST Curation Set: 4391; Year: 2008; Biosample/Treatment: cell line, K562/untreated; Disease: chronic myelogenous leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[STY])
Curated Info

38

Ruse CI, et al. (2008) Motif-specific sampling of phosphoproteomes. J Proteome Res 7, 2140-50
18452278   Curated Info

39

Cantin GT, et al. (2008) Combining protein-based IMAC, peptide-based IMAC, and MudPIT for efficient phosphoproteomic analysis. J Proteome Res 7, 1346-51
18220336   Curated Info

40

Beausoleil SA, et al. (2004) Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc Natl Acad Sci U S A 101, 12130-5
15302935   Curated Info