Ser202
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus®
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser202  -  Caldesmon (human)

Site Information
EEkPKRGsIGENQVE   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 471144

In vivo Characterization
Methods used to characterize site in vivo:
mass spectrometry ( 1 , 2 , 3 , 4 , 5 , 6 , 7 , 9 , 10 , 12 , 13 , 14 , 15 , 16 , 17 )
Disease tissue studied:
brain cancer ( 17 ) , glioblastoma ( 17 ) , glioma ( 17 ) , breast cancer ( 9 ) , HER2 positive breast cancer ( 1 ) , luminal A breast cancer ( 1 ) , luminal B breast cancer ( 1 ) , breast cancer, surrounding tissue ( 1 ) , breast cancer, triple negative ( 1 ) , cervical cancer ( 15 ) , cervical adenocarcinoma ( 15 ) , hepatocellular carcinoma, surrounding tissue ( 14 ) , lung cancer ( 7 ) , non-small cell lung adenocarcinoma ( 7 ) , ovarian cancer ( 4 ) , pancreatic ductal adenocarcinoma ( 6 ) , melanoma skin cancer ( 2 )
Relevant cell line - cell type - tissue:
'muscle, skeletal' ( 12 ) , 'pancreatic, ductal'-pancreas ( 6 ) , breast ( 1 ) , BT-549 (breast cell) ( 9 ) , Flp-In T-Rex-293 (epithelial) ( 10 ) , Flp-In T-Rex-293 (epithelial) [PRKD1 (human), genetic knockin] ( 10 ) , HeLa (cervical) ( 3 , 13 ) , HeLa S3 (cervical) ( 15 ) , hepatocyte-liver ( 14 ) , Jurkat (T lymphocyte) ( 16 ) , liver ( 5 ) , lung ( 7 ) , M059K (glial) ( 17 ) , MDA-MB-231 (breast cell) ( 9 ) , ovary ( 4 ) , WM239A (epidermal) ( 2 )

Upstream Regulation
Treatments:
nocodazole ( 15 )

References 

1

Mertins P, et al. (2016) Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534, 55-62
27251275   Curated Info

2

Stuart SA, et al. (2015) A Phosphoproteomic Comparison of B-RAFV600E and MKK1/2 Inhibitors in Melanoma Cells. Mol Cell Proteomics 14, 1599-615
25850435   Curated Info

3

Sharma K, et al. (2014) Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep 8, 1583-94
25159151   Curated Info

4

Mertins P, et al. (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol Cell Proteomics 13, 1690-704
24719451   Curated Info

5

Bian Y, et al. (2014) An enzyme assisted RP-RPLC approach for in-depth analysis of human liver phosphoproteome. J Proteomics 96, 253-62
24275569   Curated Info

6

Britton D, et al. (2014) Quantification of pancreatic cancer proteome and phosphorylome: indicates molecular events likely contributing to cancer and activity of drug targets. PLoS One 9, e90948
24670416   Curated Info

7

Schweppe DK, Rigas JR, Gerber SA (2013) Quantitative phosphoproteomic profiling of human non-small cell lung cancer tumors. J Proteomics 91, 286-96
23911959   Curated Info

8

Shiromizu T, et al. (2013) Identification of missing proteins in the neXtProt database and unregistered phosphopeptides in the PhosphoSitePlus database as part of the Chromosome-centric Human Proteome Project. J Proteome Res 12, 2414-21
23312004   Curated Info

9

Klammer M, et al. (2012) Phosphosignature predicts dasatinib response in non-small cell lung cancer. Mol Cell Proteomics 11, 651-68
22617229   Curated Info

10

Franz-Wachtel M, et al. (2012) Global detection of protein kinase D-dependent phosphorylation events in nocodazole-treated human cells. Mol Cell Proteomics 11, 160-70
22496350   Curated Info

11

Beli P, et al. (2012) Proteomic Investigations Reveal a Role for RNA Processing Factor THRAP3 in the DNA Damage Response. Mol Cell 46, 212-25
22424773   Curated Info

12

Lundby A, et al. (2012) Quantitative maps of protein phosphorylation sites across 14 different rat organs and tissues. Nat Commun 3, 876
22673903   Curated Info

13

Kettenbach AN, et al. (2011) Quantitative phosphoproteomics identifies substrates and functional modules of aurora and polo-like kinase activities in mitotic cells. Sci Signal 4, rs5
21712546   Curated Info

14

Han G, et al. (2010) Phosphoproteome analysis of human liver tissue by long-gradient nanoflow LC coupled with multiple stage MS analysis. Electrophoresis 31, 1080-9
20166139   Curated Info

15

Olsen JV, et al. (2010) Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal 3, ra3
20068231   Curated Info

16

Possemato A (2007) CST Curation Set: 3170; Year: 2007; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: pY Antibodies Used to Purify Peptides prior to LCMS: Phospho-Tyrosine Mouse mAb (P-Tyr-100) Cat#: 9411, PTMScan(R) Phospho-Tyr Motif (Y*) Immunoaffinity Beads Cat#: 1991
Curated Info

17

Stokes M (2007) CST Curation Set: 2265; Year: 2007; Biosample/Treatment: cell line, M059K/UV; Disease: glioblastoma; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[ST]Q Antibodies Used to Purify Peptides prior to LCMS: Phospho-(Ser/Thr) ATM/ATR Substrate Antibody Cat#: 2851
Curated Info