Ser11
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.7.4
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser11  -  TRAF2 (human)

Site Information
AsVtPPGsLELLQPG   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 5397201

In vivo Characterization
Methods used to characterize site in vivo:
[32P] bio-synthetic labeling ( 17 , 18 ) , immunoprecipitation ( 18 ) , mass spectrometry ( 1 , 2 , 5 , 6 , 7 , 8 , 10 , 11 , 13 , 14 , 15 , 16 ) , mutation of modification site ( 4 , 9 , 17 , 18 ) , phospho-antibody ( 3 , 9 , 17 , 18 ) , western blotting ( 3 , 9 , 17 , 18 )
Disease tissue studied:
breast cancer ( 6 , 9 , 10 ) , breast ductal carcinoma ( 6 ) , HER2 positive breast cancer ( 1 ) , luminal A breast cancer ( 1 ) , luminal B breast cancer ( 1 ) , breast cancer, triple negative ( 1 , 6 , 9 ) , leukemia ( 13 ) , acute myelogenous leukemia ( 13 ) , lung cancer ( 10 ) , non-small cell lung cancer ( 10 ) , ovarian cancer ( 6 ) , melanoma skin cancer ( 2 )
Relevant cell line - cell type - tissue:

Upstream Regulation
Regulatory protein:
PTPRN2 (human) ( 3 )
Putative in vivo kinases:
IKKE (human) ( 9 )
Treatments:
camptothecin ( 18 ) , etoposide ( 18 ) , H2O2 ( 18 ) , hydroxyurea ( 18 ) , IGF-1 ( 18 ) , ischemia ( 6 ) , phorbol_ester ( 18 ) , TNF ( 18 ) , tunicamycin ( 18 ) , UV ( 18 )

Downstream Regulation
Effects of modification on TRAF2:
activity, induced ( 9 ) , molecular association, regulation ( 9 , 18 ) , ubiquitination ( 9 )
Effects of modification on biological processes:
apoptosis, inhibited ( 18 ) , carcinogenesis, induced ( 4 , 9 ) , cell growth, induced ( 4 , 9 ) , signaling pathway regulation ( 9 )
Induce interaction with:
IKKB (human) ( 9 ) , IKKG (human) ( 9 ) , RIPK1 (human) ( 9 )
Inhibit interaction with:
cIAP1 (human) ( 9 )

Disease / Diagnostics Relevance
Relevant diseases:
breast cancer ( 9 )

References 

1

Mertins P, et al. (2016) Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534, 55-62
27251275   Curated Info

2

Stuart SA, et al. (2015) A Phosphoproteomic Comparison of B-RAFV600E and MKK1/2 Inhibitors in Melanoma Cells. Mol Cell Proteomics 14, 1599-615
25850435   Curated Info

3

Sorokin AV, et al. (2015) Aberrant Expression of proPTPRN2 in Cancer Cells Confers Resistance to Apoptosis. Cancer Res 75, 1846-58
25877877   Curated Info

4

Shen RR, et al. (2015) TRAF2 is an NF-κB-activating oncogene in epithelial cancers. Oncogene 34, 209-16
24362534   Curated Info

5

Sharma K, et al. (2014) Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep 8, 1583-94
25159151   Curated Info

6

Mertins P, et al. (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol Cell Proteomics 13, 1690-704
24719451   Curated Info

7

Mertins P, et al. (2013) Integrated proteomic analysis of post-translational modifications by serial enrichment. Nat Methods 10, 634-7
23749302   Curated Info

8

Zhou H, et al. (2013) Toward a comprehensive characterization of a human cancer cell phosphoproteome. J Proteome Res 12, 260-71
23186163   Curated Info

9

Shen RR, et al. (2012) IκB kinase ε phosphorylates TRAF2 to promote mammary epithelial cell transformation. Mol Cell Biol 32, 4756-68
23007157   Curated Info

10

Klammer M, et al. (2012) Phosphosignature predicts dasatinib response in non-small cell lung cancer. Mol Cell Proteomics 11, 651-68
22617229   Curated Info

11

Verano-Braga T, et al. (2012) Time-resolved quantitative phosphoproteomics: new insights into Angiotensin-(1-7) signaling networks in human endothelial cells. J Proteome Res 11, 3370-81
22497526   Curated Info

12

Beli P, et al. (2012) Proteomic Investigations Reveal a Role for RNA Processing Factor THRAP3 in the DNA Damage Response. Mol Cell 46, 212-25
22424773   Curated Info

13

Weber C, Schreiber TB, Daub H (2012) Dual phosphoproteomics and chemical proteomics analysis of erlotinib and gefitinib interference in acute myeloid leukemia cells. J Proteomics 75, 1343-56
22115753   Curated Info

14

Rigbolt KT, et al. (2011) System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation. Sci Signal 4, rs3
21406692   Curated Info

15

Raijmakers R, et al. (2010) Exploring the human leukocyte phosphoproteome using a microfluidic reversed-phase-TiO2-reversed-phase high-performance liquid chromatography phosphochip coupled to a quadrupole time-of-flight mass spectrometer. Anal Chem 82, 824-32
20058876   Curated Info

16

Oppermann FS, et al. (2009) Large-scale proteomics analysis of the human kinome. Mol Cell Proteomics 8, 1751-64
19369195   Curated Info

17

Thomas GS, Zhang L, Blackwell K, Habelhah H (2009) Phosphorylation of TRAF2 within its RING domain inhibits stress-induced cell death by promoting IKK and suppressing JNK activation. Cancer Res 69, 3665-72
19336568   Curated Info

18

Blackwell K, et al. (2009) TRAF2 phosphorylation modulates tumor necrosis factor alpha-induced gene expression and cell resistance to apoptosis. Mol Cell Biol 29, 303-14
18981220   Curated Info