Ser83
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.6.0.2
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser83  -  AR (human)

Site Information
QQQQQETsPRQQQQQ   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 448714

In vivo Characterization
Methods used to characterize site in vivo:
[32P] bio-synthetic labeling ( 20 , 21 ) , immunoassay ( 2 , 5 , 10 , 13 ) , immunoprecipitation ( 2 , 8 , 16 , 21 ) , mass spectrometry ( 20 ) , microscopy-colocalization with upstream kinase ( 16 ) , mutation of modification site ( 14 , 16 , 18 , 20 , 21 ) , phospho-antibody ( 2 , 3 , 4 , 5 , 6 , 7 , 9 , 10 , 11 , 12 , 13 , 14 , 16 , 17 , 18 , 19 ) , phosphoamino acid analysis ( 20 ) , phosphopeptide mapping ( 20 ) , western blotting ( 2 , 3 , 4 , 6 , 7 , 8 , 11 , 12 , 13 , 14 , 16 , 18 , 21 )
Disease tissue studied:
prostate cancer ( 2 , 3 , 4 , 6 , 8 , 10 , 11 , 12 , 13 , 14 , 16 , 18 )
Relevant cell line - cell type - tissue:
293 (epithelial) ( 17 , 18 ) , bone ( 2 ) , breast ( 9 ) , C4-2 (prostate cell) ( 3 , 4 , 11 , 18 ) , C4-2B (prostate cell) ( 11 ) , CD3+ (T lymphocyte) ( 5 ) , CD8+ (T lymphocyte) ( 5 ) , COS (fibroblast) ( 2 , 19 , 20 , 21 ) , CV1 (fibroblast) ( 21 ) , HEK293T (epithelial) ( 2 , 4 ) , HeLa (cervical) ( 18 ) , LAPC-4 (prostate cell) ( 2 , 18 ) , liver ( 2 ) , LNCaP (prostate cell) ( 2 , 4 , 8 , 10 , 11 , 12 , 13 , 14 , 16 , 18 , 20 ) , LNCaP clone FGC (prostate cell) ( 6 ) , lymphocyte ( 5 ) , muscle ( 7 ) , PC3 (prostate cell) ( 14 ) , prostate ( 5 , 10 ) , prostate cell ( 13 ) , VCap (prostate cell) ( 2 )

Upstream Regulation
Regulatory protein:
ABCC5 (human) ( 3 ) , CDK5 (human) ( 16 ) , GRB10 (human) ( 4 ) , KEPI (human) ( 8 )
Putative in vivo kinases:
CDK1 (human) ( 2 , 3 , 6 , 13 , 14 , 18 ) , CDK9 (human) ( 14 )
Kinases, in vitro:
CDK5 (human) ( 16 )
Putative upstream phosphatases:
PPP2CA (human) ( 4 , 19 )
Treatments:
3-amino-1H-pyrazolo[3,4-beta]quinoxaline ( 18 ) , androstanolone ( 2 , 6 , 13 , 14 , 18 ) , bicalutamide ( 18 ) , CAPE ( 6 ) , CDK9 inhibitor II ( 2 ) , CGP74514A ( 14 ) , cyproterone_acetate ( 18 ) , hydroxyurea ( 14 ) , metribolone ( 17 , 19 , 20 ) , mifepristone ( 18 ) , mimosine ( 14 ) , nocodazole ( 2 , 14 ) , NU6102 ( 18 ) , okadaic_acid ( 17 ) , rapamycin ( 11 ) , RO-3306 ( 2 , 3 , 14 ) , salinomycin ( 11 ) , seliciclib ( 13 , 18 ) , Sema4D ( 12 ) , siRNA ( 3 , 4 )

Downstream Regulation
Effects of modification on AR:
activity, induced ( 10 , 14 ) , intracellular localization ( 2 , 8 , 10 , 16 ) , molecular association, regulation ( 2 , 14 , 16 ) , protein stabilization ( 6 , 16 )
Effects of modification on biological processes:
carcinogenesis, induced ( 2 , 3 , 4 ) , cell cycle regulation ( 8 ) , cell growth, induced ( 3 , 13 , 16 ) , cell motility, induced ( 3 ) , signaling pathway regulation ( 4 , 6 ) , transcription, altered ( 19 ) , transcription, induced ( 2 , 3 , 4 , 6 , 14 )
Induce interaction with:
CDK5 (human) ( 16 ) , DNA ( 2 , 14 )

Disease / Diagnostics Relevance
Relevant diseases:
prostate cancer ( 5 , 10 , 13 , 16 , 20 )

References 

1

Nicoll JX, Fry AC, Mosier EM (2021) Androgen and glucocorticoid receptor phosphorylation following resistance exercise and pre-workout supplementation. Steroids 172, 108859
33974920   Curated Info

2

Gao X, et al. (2021) Phosphorylation of the androgen receptor at Ser81 is co-sustained by CDK1 and CDK9 and leads to AR-mediated transactivation in prostate cancer. Mol Oncol
33932081   Curated Info

3

Ji G, et al. (2021) Upregulation of ATP Binding Cassette Subfamily C Member 5 facilitates Prostate Cancer progression and Enzalutamide resistance via the CDK1-mediated AR Ser81 Phosphorylation Pathway. Int J Biol Sci 17, 1613-1628
33994848   Curated Info

4

Hao J, et al. (2020) GRB10 sustains AR activity by interacting with PP2A in prostate cancer cells. Int J Cancer
33038264   Curated Info

5

McAllister M, et al. (2020) Inflammatory infiltration is associated with AR expression and poor prognosis in hormone naïve prostate cancer. Prostate
32846021   Curated Info

6

Kuo YY, et al. (2019) Caffeic acid phenethyl ester suppresses androgen receptor signaling and stability via inhibition of phosphorylation on Ser81 and Ser213. Cell Commun Signal 17, 100
31429764   Curated Info

7

Nicoll JX, Fry AC, Mosier EM (2019) Sex-based differences in resting MAPK, androgen, and glucocorticoid receptor phosphorylation in human skeletal muscle. Steroids 141, 23-29
30414425   Curated Info

8

Grey J, et al. (2018) Differential regulation of the androgen receptor by protein phosphatase regulatory subunits. Oncotarget 9, 3922-3935
29423094   Curated Info

9

Roseweir AK, et al. (2017) Phosphorylation of androgen receptors at serine 515 is a potential prognostic marker for triple negative breast cancer. Oncotarget 8, 37172-37185
28415597   Curated Info

10

Patek S, et al. (2017) Androgen receptor phosphorylation status at serine 578 predicts poor outcome in prostate cancer patients. Oncotarget 8, 4875-4887
27902483   Curated Info

11

Mirkheshti N, et al. (2016) Dual targeting of androgen receptor and mTORC1 by salinomycin in prostate cancer. Oncotarget 7, 62240-62254
27557496   Curated Info

12

Williamson M, de Winter P, Masters JR (2016) Plexin-B1 signalling promotes androgen receptor translocation to the nucleus. Oncogene 35, 1066-72
25982277   Curated Info

13

Willder JM, et al. (2013) Androgen receptor phosphorylation at serine 515 by Cdk1 predicts biochemical relapse in prostate cancer patients. Br J Cancer 108, 139-48
23321516   Curated Info

14

Chen S, Gulla S, Cai C, Balk SP (2012) Androgen receptor serine 81 phosphorylation mediates chromatin binding and transcriptional activation. J Biol Chem 287, 8571-83
22275373   Curated Info

15

Cai C, et al. (2011) Androgen receptor gene expression in prostate cancer is directly suppressed by the androgen receptor through recruitment of lysine-specific demethylase 1. Cancer Cell 20, 457-71
22014572   Curated Info

16

Hsu FN, et al. (2011) Regulation of androgen receptor and prostate cancer growth by cyclin-dependent kinase 5. J Biol Chem 286, 33141-9
21799006   Curated Info

17

Yang CS, et al. (2007) Ligand binding to the androgen receptor induces conformational changes that regulate phosphatase interactions. Mol Cell Biol 27, 3390-404
17325038   Curated Info

18

Chen S, et al. (2006) Androgen receptor phosphorylation and stabilization in prostate cancer by cyclin-dependent kinase 1. Proc Natl Acad Sci U S A 103, 15969-74
17043241   Curated Info

19

Yang CS, et al. (2005) Simian virus 40 small t antigen mediates conformation-dependent transfer of protein phosphatase 2A onto the androgen receptor. Mol Cell Biol 25, 1298-308
15684382   Curated Info

20

Gioeli D, et al. (2002) Androgen receptor phosphorylation. Regulation and identification of the phosphorylation sites. J Biol Chem 277, 29304-14
12015328   Curated Info

21

Zhou ZX, Kemppainen JA, Wilson EM (1995) Identification of three proline-directed phosphorylation sites in the human androgen receptor. Mol Endocrinol 9, 605-15
7565807   Curated Info