Ser229
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.7.0.1
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser229  -  TAF140 (mouse)

Site Information
QKtPPVLsPVRVQDR   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 453776

In vivo Characterization
Methods used to characterize site in vivo:
mass spectrometry ( 1 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 )
Disease tissue studied:
anthrax infection ( 13 ) , leukemia ( 10 ) , acute myelogenous leukemia ( 10 )
Relevant cell line - cell type - tissue:
'3T3-L1, differentiated' (adipocyte) ( 3 , 5 , 8 ) , 'fat, brown' ( 14 ) , 32Dcl3 (myeloid) [FLT3 (mouse), transfection, chimera with human FLT3-ITD mutant (corresponding to wild type P36888 ( 18 ) , 32Dcl3 (myeloid) ( 18 ) , blood ( 10 ) , brain ( 14 , 16 ) , ES-J1 (stem) ( 17 ) , Hepa 1-6 (epithelial) ( 19 ) , kidney ( 14 ) , liver ( 1 , 7 , 14 ) , lung ( 14 ) , macrophage-bone marrow ( 15 ) , macrophage-bone marrow [DUSP1 (mouse), homozygous knockout] ( 15 ) , macrophage-peritoneum ( 9 ) , MC3T3-E1 (preosteoblast) ( 4 ) , MEF (fibroblast) [p53 (mouse), homozygous knockout] ( 11 ) , MEF (fibroblast) [TSC2 (mouse), homozygous knockout] ( 12 ) , MEF (fibroblast) ( 12 ) , spleen ( 13 , 14 ) , stromal ( 6 ) , testis ( 14 )

Upstream Regulation
Regulatory protein:
FLT3 (mouse) ( 18 )
Putative in vivo kinases:
mTOR (mouse) ( 11 )
Treatments:
Torin1 ( 11 )

References 

1

Robles MS, Humphrey SJ, Mann M (2017) Phosphorylation Is a Central Mechanism for Circadian Control of Metabolism and Physiology. Cell Metab 25, 118-127
27818261   Curated Info

2

Sacco F, et al. (2016) Glucose-regulated and drug-perturbed phosphoproteome reveals molecular mechanisms controlling insulin secretion. Nat Commun 7, 13250
27841257   Curated Info

3

Minard AY, et al. (2016) mTORC1 Is a Major Regulatory Node in the FGF21 Signaling Network in Adipocytes. Cell Rep 17, 29-36
27681418   Curated Info

4

Williams GR, et al. (2016) Exploring G protein-coupled receptor signaling networks using SILAC-based phosphoproteomics. Methods 92, 36-50
26160508   Curated Info

5

Parker BL, et al. (2015) Targeted phosphoproteomics of insulin signaling using data-independent acquisition mass spectrometry. Sci Signal 8, rs6
26060331   Curated Info

6

Mertins P, et al. (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol Cell Proteomics 13, 1690-704
24719451   Curated Info

7

Wilson-Grady JT, Haas W, Gygi SP (2013) Quantitative comparison of the fasted and re-fed mouse liver phosphoproteomes using lower pH reductive dimethylation. Methods 61, 277-86
23567750   Curated Info

8

Humphrey SJ, et al. (2013) Dynamic Adipocyte Phosphoproteome Reveals that Akt Directly Regulates mTORC2. Cell Metab 17, 1009-20
23684622   Curated Info

9

Wu X, et al. (2012) Investigation of receptor interacting protein (RIP3)-dependent protein phosphorylation by quantitative phosphoproteomics. Mol Cell Proteomics 11, 1640-51
22942356   Curated Info

10

Trost M, et al. (2012) Posttranslational regulation of self-renewal capacity: insights from proteome and phosphoproteome analyses of stem cell leukemia. Blood 120, e17-27
22802335   Curated Info

11

Hsu PP, et al. (2011) The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332, 1317-22
21659604   Curated Info

12

Yu Y, et al. (2011) Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science 332, 1322-6
21659605   Curated Info

13

Manes NP, et al. (2011) Discovery of mouse spleen signaling responses to anthrax using label-free quantitative phosphoproteomics via mass spectrometry. Mol Cell Proteomics 10, M110.000927
21189417   Curated Info

14

Huttlin EL, et al. (2010) A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 143, 1174-89
21183079   Curated Info

15

Weintz G, et al. (2010) The phosphoproteome of toll-like receptor-activated macrophages. Mol Syst Biol 6, 371
20531401   Curated Info

16

Wiśniewski JR, et al. (2010) Brain phosphoproteome obtained by a FASP-based method reveals plasma membrane protein topology. J Proteome Res 9, 3280-9
20415495   Curated Info

17

Zhou J (2010) CST Curation Set: 9664; Year: 2010; Biosample/Treatment: cell line, ES J1/untreated; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: RXXp[ST] Antibodies Used to Purify Peptides prior to LCMS: Phospho-Akt Substrate (RXRXXS/T) (110B7) Rabbit mAb Cat#: 9614, PTMScan(R) Phospho-Akt Substrate Motif (RXXS*/T*) Immunoaffinity Beads Cat#: 1978
Curated Info

18

Choudhary C, et al. (2009) Mislocalized activation of oncogenic RTKs switches downstream signaling outcomes. Mol Cell 36, 326-39
19854140   Curated Info

19

Pan C, Gnad F, Olsen JV, Mann M (2008) Quantitative phosphoproteome analysis of a mouse liver cell line reveals specificity of phosphatase inhibitors. Proteomics 8, 4534-46
18846507   Curated Info