Ser52
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.7.0.1
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser52  -  eIF2-alpha (mouse)

Site Information
MILLSELsRrrIRSI   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 447635

In vivo Characterization
Methods used to characterize site in vivo:
immunoassay ( 9 , 11 , 12 ) , mutation of modification site ( 6 , 7 , 14 , 15 , 16 , 23 , 25 , 28 , 29 , 30 , 32 , 34 , 35 , 38 , 41 , 43 , 45 ) , peptide sequencing ( 24 ) , phospho-antibody ( 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 ) , western blotting ( 6 , 7 , 8 , 9 , 10 , 11 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 36 , 37 , 38 , 41 , 43 , 44 )
Disease tissue studied:
breast cancer ( 19 ) , colorectal cancer ( 8 , 13 ) , colorectal carcinoma ( 8 , 13 ) , kidney cancer ( 31 ) , liver cancer ( 29 , 31 ) , lung cancer ( 15 , 41 ) , non-small cell lung cancer ( 15 ) , non-small cell lung adenocarcinoma ( 15 ) , pancreatic cancer ( 18 , 36 ) , pancreatic carcinoma ( 18 , 36 ) , melanoma skin cancer ( 19 ) , fibrosarcoma of soft tissue ( 15 ) , type 2 diabetes ( 27 ) , tuberous sclerosis ( 31 )
Relevant cell line - cell type - tissue:
'brain, cerebellum' ( 24 ) , 'brain, hippocampus' ( 34 ) , 'muscle, skeletal' ( 17 ) , 'stem, embryonic' ( 42 ) , 293 (epithelial) ( 8 , 33 , 37 ) , 3T3 (fibroblast) [SHP-2 (mouse), homozygous knockout] ( 43 ) , 3T3 (fibroblast) ( 41 ) , A549 (pulmonary) ( 15 , 41 ) , AG01522 (fibroblast) ( 41 ) , beta-pancreas ( 36 ) , BHK-21 (fibroblast) ( 44 ) , COS (fibroblast) ( 18 ) , DLD1 (intestinal) ( 8 ) , embryo [PPP1R15B (mouse), homozygous knockout] ( 28 ) , Fao (hepatic) ( 29 ) , glial ( 31 ) , HCT116 (intestinal) ( 8 , 13 ) , HeLa (cervical) ( 7 , 37 , 38 , 41 ) , hepatocyte-liver ( 22 ) , hepatocyte-liver [eIF2-alpha (mouse), homozygous knockout] ( 29 ) , HT1080 (fibroblast) ( 15 ) , keratinocyte ( 6 ) , kidney ( 31 ) , liver ( 22 , 31 , 45 ) , macrophage-peritoneum ( 8 ) , MEF (fibroblast) [Akt1 (mouse), homozygous knockout] ( 21 ) , MEF (fibroblast) [eIF2-alpha (mouse)] ( 35 ) , MEF (fibroblast) [GADD34 (human)] ( 33 ) , MEF (fibroblast) [IGF1R (mouse)] ( 34 , 39 ) , MEF (fibroblast) [PKR (mouse), homozygous knockout] ( 23 , 27 ) , MEF (fibroblast) [PPP1R15B (mouse), homozygous knockout] ( 28 ) , MEF (fibroblast) [XIAP (mouse), homozygous knockout] ( 26 ) , MEF (fibroblast) ( 8 , 15 , 18 , 19 , 20 , 23 , 25 , 30 , 31 , 32 , 36 , 37 , 38 , 41 , 45 ) , MIN6 (pancreatic) ( 18 , 36 ) , muscle ( 12 , 16 ) , neuron ( 9 ) , neuron-'brain, hippocampus' ( 11 ) , neuron-dorsal root ganglia ( 14 ) , pancreas ( 45 ) , RAW 264.7 (macrophage) ( 10 ) , spinal cord ( 9 ) , squamous ( 6 ) , T47D (breast cell) ( 19 ) , WM2664 (melanocyte) ( 19 )

Upstream Regulation
Regulatory protein:
Akt1 (mouse) ( 21 ) , Akt2 (mouse) ( 21 ) , Akt3 (mouse) ( 21 ) , ATF-4 (mouse) ( 20 ) , DDIT3 (mouse) ( 20 ) , DUSP1 (mouse) ( 24 ) , GADD34 (human) ( 33 ) , GCN2 (human) ( 8 ) , GCN2 (mouse) ( 19 , 21 , 42 ) , HRI (human) ( 7 ) , IKKE (human) ( 8 ) , IRE1 (mouse) ( 29 ) , NCK1 (human) ( 18 ) , NCK1 (mouse) ( 37 ) , NCK2 (mouse) ( 37 ) , PERK (human) ( 7 ) , PERK (mouse) ( 19 , 21 ) , PIK3R1 (human) ( 12 ) , PKR (human) ( 7 , 8 ) , PKR (mouse) ( 14 , 19 , 27 , 38 ) , PPP1R15B (mouse) ( 28 ) , RHOT1 (human) ( 11 ) , RHOT2 (human) ( 11 ) , STING (human) ( 8 ) , TBC1D8B (human) ( 13 ) , TBK1 (human) ( 8 ) , XIAP (mouse) ( 26 )
Putative in vivo kinases:
GCN2 (mouse) ( 7 , 43 ) , PERK (mouse) ( 8 , 35 , 41 ) , PKR (mouse) ( 9 , 14 , 23 , 44 )
Kinases, in vitro:
PERK (human) ( 8 ) , PKR (mouse) ( 44 )
Putative upstream phosphatases:
PPP1CA (human) ( 36 , 37 ) , PPP1R15B (mouse) ( 40 )
Treatments:
2-AP ( 44 ) , 2-deoxyglucose ( 26 ) , adriamycin ( 23 ) , Akt_inhibitor_VIII ( 21 ) , amino_acid_starvation ( 19 , 42 ) , arsenite ( 35 , 40 ) , bortezomib ( 6 ) , butyrate ( 8 , 10 ) , BX795 ( 8 ) , cGAMP ( 8 ) , cigarette_smoke ( 10 ) , cycloheximide ( 40 ) , dexamethasone ( 12 ) , diamide ( 35 ) , dimeric amidobenzimidazole ( 8 ) , disulfiram ( 35 ) , DMXAA ( 8 ) , double-stranded_RNA ( 44 ) , DTT ( 18 , 24 , 40 , 41 ) , exercise ( 17 ) , fasting ( 22 ) , Freund's_complete_adjuvant ( 14 ) , glucagon ( 22 ) , glucose ( 36 ) , GSK2656157 ( 8 ) , H-89 ( 22 ) , H2O2 ( 21 ) , Halofuginone ( 7 ) , heparin sodium ( 19 ) , histidinol ( 42 ) , hypoxia ( 41 ) , IFN-alpha ( 38 ) , IFN-gamma ( 44 ) , injury ( 9 ) , JSH-23 ( 8 ) , LY294002 ( 21 ) , mannose ( 35 ) , NaAsO2 ( 6 ) , obesity-inducing diet ( 22 ) , okadaic_acid ( 36 , 38 ) , PERK inhibitor 1 ( 8 ) , poly(I-C) ( 38 ) , rapamycin ( 8 , 31 ) , Sal003 ( 16 , 34 ) , serum_withdrawal ( 38 ) , siRNA ( 7 , 18 ) , SP600125 ( 24 , 43 ) , tauroursodeoxycholic_acid ( 8 ) , thapsigargin ( 18 , 19 , 20 , 21 , 22 , 28 , 32 , 36 , 41 , 42 , 43 ) , TNF ( 14 , 38 ) , TPCA1 ( 8 ) , tunicamycin ( 6 , 7 , 20 , 24 , 29 , 37 , 40 ) , UV ( 39 , 43 ) , virus infection ( 8 , 30 )

Downstream Regulation
Effects of modification on eIF2-alpha:
activity, induced ( 39 ) , activity, inhibited ( 32 , 43 )
Effects of modification on biological processes:
apoptosis, induced ( 9 , 10 ) , apoptosis, inhibited ( 6 , 13 , 20 , 23 , 26 ) , autophagy, induced ( 6 ) , cell growth, altered ( 28 , 45 ) , cytoskeletal reorganization ( 6 ) , transcription, altered ( 7 ) , transcription, induced ( 45 ) , translation, altered ( 6 , 25 , 32 , 35 , 45 ) , translation, induced ( 15 ) , translation, inhibited ( 8 , 9 , 12 , 16 , 20 )

References 

1

Attaway AH, et al. (2023) Adaptive exhaustion during prolonged intermittent hypoxia causes dysregulated skeletal muscle protein homeostasis. J Physiol 601, 567-606
36533558   Curated Info

2

Eyme KM, et al. (2023) Targeting de novo lipid synthesis induces lipotoxicity and impairs DNA damage repair in glioblastoma mouse models. Sci Transl Med 15, eabq6288
36652537   Curated Info

3

Brüggenthies JB, et al. (2022) A cell-based chemical-genetic screen for amino acid stress response inhibitors reveals torins reverse stress kinase GCN2 signaling. J Biol Chem 298, 102629
36273589   Curated Info

4

Tsuneki H, et al. (2022) Hypothalamic orexin prevents non-alcoholic steatohepatitis and hepatocellular carcinoma in obesity. Cell Rep 41, 111497
36261021   Curated Info

5

Zhou Y, et al. (2022) Jatrorrhizine Improves Endothelial Function in Diabetes and Obesity through Suppression of Endoplasmic Reticulum Stress. Int J Mol Sci 23
36292919   Curated Info

6

Hurwitz B, et al. (2022) The integrated stress response remodels the microtubule organizing center to clear unfolded proteins following proteotoxic stress. Elife 11
35758650   Curated Info

7

Pitera AP, et al. (2022) Cellular responses to halofuginone reveal a vulnerability of the GCN2 branch of the integrated stress response. EMBO J 41, e109985
35466425   Curated Info

8

Zhang D, et al. (2022) A non-canonical cGAS-STING-PERK pathway facilitates the translational program critical for senescence and organ fibrosis. Nat Cell Biol 24, 766-782
35501370   Curated Info

9

Chang L, et al. (2021) Attenuation of Activated eIF2α Signaling by ISRIB Treatment After Spinal Cord Injury Improves Locomotor Function. J Mol Neurosci
34647267   Curated Info

10

Feng H, et al. (2021) Cigarette smoke extracts induce apoptosis in Raw264.7 cells via endoplasmic reticulum stress and the intracellular Ca/P38/STAT1 pathway. Toxicol In Vitro 77, 105249
34560245   Curated Info

11

López-Doménech G, et al. (2021) Loss of neuronal Miro1 disrupts mitophagy and induces hyperactivation of the integrated stress response. EMBO J, e100715
34152608   Curated Info

12

Chen TC, et al. (2021) The role of striated muscle Pik3r1 in glucose and protein metabolism following chronic glucocorticoid exposure. J Biol Chem, 100395
33567340   Curated Info

13

Okada J, et al. (2021) TBC1D8B, a GTPase-activating protein, is a novel apoptosis inducer. Biomed Res 42, 95-102
34092754   Curated Info

14

Khoutorsky A, et al. (2016) eIF2α phosphorylation controls thermal nociception. Proc Natl Acad Sci U S A 113, 11949-11954
27698114   Curated Info

15

Rajesh K, et al. (2016) The eIF2α serine 51 phosphorylation-ATF4 arm promotes HIPPO signaling and cell death under oxidative stress. Oncotarget 7, 51044-51058
27409837   Curated Info

16

Zismanov V, et al. (2016) Phosphorylation of eIF2α Is a Translational Control Mechanism Regulating Muscle Stem Cell Quiescence and Self-Renewal. Cell Stem Cell 18, 79-90
26549106   Curated Info

17

Pagano AF, et al. (2014) Autophagy and protein turnover signaling in slow-twitch muscle during exercise. Med Sci Sports Exerc 46, 1314-25
24389528   Curated Info

18

Yamani L, Latreille M, Larose L (2014) Interaction of Nck1 and PERK phosphorylated at Y⁵⁶¹ negatively modulates PERK activity and PERK regulation of pancreatic β-cell proinsulin content. Mol Biol Cell 25, 702-11
24371088   Curated Info

19

Bhattacharya S, et al. (2013) Anti-tumorigenic effects of Type 1 interferon are subdued by integrated stress responses. Oncogene 32, 4214-21
23045272   Curated Info

20

Han J, et al. (2013) ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death. Nat Cell Biol 15, 481-90
23624402   Curated Info

21

Mounir Z, et al. (2011) Akt determines cell fate through inhibition of the PERK-eIF2α phosphorylation pathway. Sci Signal 4, ra62
21954288   Curated Info

22

Mao T, et al. (2011) PKA phosphorylation couples hepatic inositol-requiring enzyme 1alpha to glucagon signaling in glucose metabolism. Proc Natl Acad Sci U S A 108, 15852-7
21911379   Curated Info

23

Peidis P, et al. (2011) Doxorubicin bypasses the cytoprotective effects of eIF2α phosphorylation and promotes PKR-mediated cell death. Cell Death Differ 18, 145-54
20559319   Curated Info

24

Li B, et al. (2011) Differences in endoplasmic reticulum stress signalling kinetics determine cell survival outcome through activation of MKP-1. Cell Signal 23, 35-45
20727407   Curated Info

25

Papadakis AI, et al. (2010) eIF2{alpha} Kinase PKR modulates the hypoxic response by Stat3-dependent transcriptional suppression of HIF-1{alpha}. Cancer Res 70, 7820-9
20924113   Curated Info

26

Muaddi H, et al. (2010) Phosphorylation of eIF2α at serine 51 is an important determinant of cell survival and adaptation to glucose deficiency. Mol Biol Cell 21, 3220-31
20660158   Curated Info

27

Nakamura T, et al. (2010) Double-stranded RNA-dependent protein kinase links pathogen sensing with stress and metabolic homeostasis. Cell 140, 338-48
20144759   Curated Info

28

Harding HP, et al. (2009) Ppp1r15 gene knockout reveals an essential role for translation initiation factor 2 alpha (eIF2alpha) dephosphorylation in mammalian development. Proc Natl Acad Sci U S A 106, 1832-7
19181853   Curated Info

29

Rutkowski DT, et al. (2008) UPR pathways combine to prevent hepatic steatosis caused by ER stress-mediated suppression of transcriptional master regulators. Dev Cell 15, 829-40
19081072   Curated Info

30

Krishnamoorthy J, Mounir Z, Raven JF, Koromilas AE (2008) The eIF2alpha kinases inhibit vesicular stomatitis virus replication independently of eIF2alpha phosphorylation. Cell Cycle 7, 2346-51
18677106   Curated Info

31

Ozcan U, et al. (2008) Loss of the tuberous sclerosis complex tumor suppressors triggers the unfolded protein response to regulate insulin signaling and apoptosis. Mol Cell 29, 541-51
18342602   Curated Info

32

Raven JF, et al. (2008) PKR and PKR-like endoplasmic reticulum kinase induce the proteasome-dependent degradation of cyclin D1 via a mechanism requiring eukaryotic initiation factor 2alpha phosphorylation. J Biol Chem 283, 3097-108
18063576   Curated Info

33

Minami K, et al. (2007) Suppression of viral replication by stress-inducible GADD34 protein via the mammalian serine/threonine protein kinase mTOR pathway. J Virol 81, 11106-15
17670836   Curated Info

34

Costa-Mattioli M, et al. (2007) eIF2alpha phosphorylation bidirectionally regulates the switch from short- to long-term synaptic plasticity and memory. Cell 129, 195-206
17418795   Curated Info

35

Shang J, et al. (2007) Translation attenuation by PERK balances ER glycoprotein synthesis with lipid-linked oligosaccharide flux. J Cell Biol 176, 605-16
17325203   Curated Info

36

Vander Mierde D, et al. (2007) Glucose activates a protein phosphatase-1-mediated signaling pathway to enhance overall translation in pancreatic beta-cells. Endocrinology 148, 609-17
17082262   Curated Info

37

Latreille M, Larose L (2006) Nck in a complex containing the catalytic subunit of protein phosphatase 1 regulates eukaryotic initiation factor 2alpha signaling and cell survival to endoplasmic reticulum stress. J Biol Chem 281, 26633-44
16835242   Curated Info

38

Scheuner D, et al. (2006) Double-stranded RNA-dependent protein kinase phosphorylation of the alpha-subunit of eukaryotic translation initiation factor 2 mediates apoptosis. J Biol Chem 281, 21458-68
16717090   Curated Info

39

Wu S, et al. (2004) Ultraviolet light activates NFkappaB through translational inhibition of IkappaBalpha synthesis. J Biol Chem 279, 34898-902
15184376   Curated Info

40

Jousse C, et al. (2003) Inhibition of a constitutive translation initiation factor 2alpha phosphatase, CReP, promotes survival of stressed cells. J Cell Biol 163, 767-75
14638860   Curated Info

41

Koumenis C, et al. (2002) Regulation of protein synthesis by hypoxia via activation of the endoplasmic reticulum kinase PERK and phosphorylation of the translation initiation factor eIF2alpha. Mol Cell Biol 22, 7405-16
12370288   Curated Info

42

Zhang P, et al. (2002) The GCN2 eIF2alpha kinase is required for adaptation to amino acid deprivation in mice. Mol Cell Biol 22, 6681-8
12215525   Curated Info

43

Deng J, et al. (2002) Activation of GCN2 in UV-irradiated cells inhibits translation. Curr Biol 12, 1279-86
12176355   Curated Info

44

Ben-Asouli Y, et al. (2002) Human interferon-gamma mRNA autoregulates its translation through a pseudoknot that activates the interferon-inducible protein kinase PKR. Cell 108, 221-32
11832212   Curated Info

45

Scheuner D, et al. (2001) Translational control is required for the unfolded protein response and in vivo glucose homeostasis. Mol Cell 7, 1165-76
11430820   Curated Info