Ser215
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.6.0.2
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser215  -  AR (human)

Site Information
SGRAREAsGAPtsSK   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 448577

In vivo Characterization
Methods used to characterize site in vivo:
[32P] bio-synthetic labeling ( 14 ) , immunoassay ( 2 , 7 , 10 ) , immunoprecipitation ( 5 , 6 ) , mutation of modification site ( 8 , 12 , 13 , 14 ) , phospho-antibody ( 2 , 3 , 4 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 ) , western blotting ( 3 , 4 , 5 , 6 , 7 , 8 , 9 , 11 , 12 , 13 )
Disease tissue studied:
prostate cancer ( 3 , 5 , 6 , 7 , 8 , 9 , 11 , 13 )
Relevant cell line - cell type - tissue:
22Rv1 (prostate cell) ( 5 , 11 ) , 293 (epithelial) ( 12 ) , CD3+ (T lymphocyte) ( 2 ) , CD8+ (T lymphocyte) ( 2 ) , COS (fibroblast) ( 8 , 12 , 13 , 14 ) , CWR-R1 (prostate cell) ( 8 ) , DU 145 (prostate cell) ( 14 ) , HEK293T (epithelial) ( 8 , 12 ) , LNCaP (prostate cell) ( 6 , 7 , 8 , 9 , 11 , 13 ) , LNCaP clone FGC (prostate cell) ( 3 ) , lymphocyte ( 2 ) , muscle ( 4 ) , PC3 (prostate cell) ( 14 ) , prostate ( 2 , 10 )

Upstream Regulation
Regulatory protein:
caveolin-1 (human) ( 10 ) , HN1 (human) ( 9 ) , KEPI (human) ( 6 ) , PIK3C2A (human) ( 12 ) , PTEN (human) ( 13 ) , USP12 (human) ( 5 )
Putative in vivo kinases:
Akt1 (human) ( 3 , 9 , 12 , 13 , 14 ) , Pim1 (human) ( 8 )
Kinases, in vitro:
Akt1 (human) ( 14 , 15 ) , Pim1 (human) ( 8 )
Treatments:
androstanolone ( 3 ) , CAPE ( 3 ) , hydroxyflutamide ( 7 ) , IGF-1 ( 13 , 14 ) , isosilybin_B ( 11 ) , LY294002 ( 9 , 11 , 12 , 13 , 14 ) , metribolone ( 9 ) , siRNA ( 8 ) , testosterone ( 7 , 10 )

Downstream Regulation
Effects of modification on AR:
activity, induced ( 8 ) , activity, inhibited ( 14 ) , intracellular localization ( 9 , 12 ) , molecular association, regulation ( 8 ) , protein degradation ( 6 , 8 ) , protein stabilization ( 3 , 9 ) , ubiquitination ( 8 , 9 )
Effects of modification on biological processes:
apoptosis, inhibited ( 12 , 14 ) , carcinogenesis, induced ( 8 ) , cell cycle regulation ( 6 , 8 ) , cell growth, induced ( 8 , 10 ) , signaling pathway regulation ( 3 , 10 ) , transcription, altered ( 12 ) , transcription, induced ( 3 , 6 , 8 , 9 , 10 )
Induce interaction with:
MDM2 (human) ( 8 )

Disease / Diagnostics Relevance
Relevant diseases:
prostate cancer ( 2 )

References 

1

Nicoll JX, Fry AC, Mosier EM (2021) Androgen and glucocorticoid receptor phosphorylation following resistance exercise and pre-workout supplementation. Steroids 172, 108859
33974920   Curated Info

2

McAllister M, et al. (2020) Inflammatory infiltration is associated with AR expression and poor prognosis in hormone naïve prostate cancer. Prostate
32846021   Curated Info

3

Kuo YY, et al. (2019) Caffeic acid phenethyl ester suppresses androgen receptor signaling and stability via inhibition of phosphorylation on Ser81 and Ser213. Cell Commun Signal 17, 100
31429764   Curated Info

4

Nicoll JX, Fry AC, Mosier EM (2019) Sex-based differences in resting MAPK, androgen, and glucocorticoid receptor phosphorylation in human skeletal muscle. Steroids 141, 23-29
30414425   Curated Info

5

McClurg UL, et al. (2018) The novel anti-androgen candidate galeterone targets deubiquitinating enzymes, USP12 and USP46, to control prostate cancer growth and survival. Oncotarget 9, 24992-25007
29861848   Curated Info

6

Grey J, et al. (2018) Differential regulation of the androgen receptor by protein phosphatase regulatory subunits. Oncotarget 9, 3922-3935
29423094   Curated Info

7

Górowska-Wójtowicz E, et al. (2017) Anti-androgen 2-hydroxyflutamide modulates cadherin, catenin and androgen receptor phosphorylation in androgen-sensitive LNCaP and androgen-independent PC3 prostate cancer cell lines acting via PI3K/Akt and MAPK/ERK1/2 pathways. Toxicol In Vitro 40, 324-335
28163245   Curated Info

8

Linn DE, et al. (2012) Differential Regulation of Androgen Receptor by PIM-1 Kinases via Phosphorylation-dependent Recruitment of Distinct Ubiquitin E3 Ligases. J Biol Chem 287, 22959-68
22584579   Curated Info

9

Varisli L, et al. (2012) Androgen regulated HN1 leads proteosomal degradation of androgen receptor (AR) and negatively influences AR mediated transactivation in prostate cells. Mol Cell Endocrinol 350, 107-17
22155408   Curated Info

10

Bryant KG, et al. (2011) Caveolin-1 overexpression enhances androgen-dependent growth and proliferation in the mouse prostate. Int J Biochem Cell Biol 43, 1318-29
21601007   Curated Info

11

Deep G, Oberlies NH, Kroll DJ, Agarwal R (2008) Isosilybin B causes androgen receptor degradation in human prostate carcinoma cells via PI3K-Akt-Mdm2-mediated pathway. Oncogene 27, 3986-98
18332867   Curated Info

12

Palazzolo I, et al. (2007) Akt blocks ligand binding and protects against expanded polyglutamine androgen receptor toxicity. Hum Mol Genet 16, 1593-603
17470458   Curated Info

13

Lin HK, et al. (2003) Suppression versus induction of androgen receptor functions by the phosphatidylinositol 3-kinase/Akt pathway in prostate cancer LNCaP cells with different passage numbers. J Biol Chem 278, 50902-7
14555644   Curated Info

14

Lin HK, Yeh S, Kang HY, Chang C (2001) Akt suppresses androgen-induced apoptosis by phosphorylating and inhibiting androgen receptor. Proc Natl Acad Sci U S A 98, 7200-5
11404460   Curated Info

15

Wen Y, et al. (2000) HER-2/neu promotes androgen-independent survival and growth of prostate cancer cells through the Akt pathway. Cancer Res 60, 6841-5
11156376   Curated Info