Ser321
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.5.9.3
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser321  -  RIPK1 (mouse)

Site Information
PVLQRMFsLQHDCVP   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 468644

In vivo Characterization
Methods used to characterize site in vivo:
immunoprecipitation ( 2 , 3 , 4 , 5 ) , mass spectrometry ( 2 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 ) , mutation of modification site ( 2 , 3 , 4 , 5 ) , phospho-antibody ( 1 , 3 , 4 , 5 ) , western blotting ( 1 , 2 , 3 , 4 , 5 )
Disease tissue studied:
breast cancer ( 5 ) , breast adenocarcinoma ( 5 ) , breast cancer, triple negative ( 5 ) , fibrosarcoma of soft tissue ( 4 )
Relevant cell line - cell type - tissue:
'3T3-L1, differentiated' (adipocyte) ( 12 ) , 293 (epithelial) ( 5 ) , 3T3 (fibroblast) [KRas (human), transfection] ( 10 ) , BV2 (microglia) ( 4 ) , HEK293T (epithelial) ( 2 ) , HL-1 (myocyte) [Akt1 (mouse), knockdown, stable lentiviral expression of Akt1 shRNA] ( 8 ) , HL-1 (myocyte) [Akt2 (mouse), knockdown, stable lentiviral expression of Akt2 shRNA] ( 8 ) , HL-1 (myocyte) ( 8 ) , kidney ( 15 ) , L929 (fibroblast) ( 4 ) , liver ( 11 , 14 , 16 ) , liver [leptin (mouse), homozygous knockout] ( 14 ) , lung ( 15 ) , macrophage ( 2 ) , macrophage-bone marrow ( 1 , 3 , 5 ) , macrophage-peritoneum [MPRIP (mouse), homozygous knockout] ( 13 ) , MDA-MB-231 (breast cell) ( 5 ) , MDA-MB-468 (breast cell) ( 5 ) , MEF (fibroblast) ( 2 , 3 , 4 , 5 ) , RAW 264.7 (macrophage) ( 7 ) , spleen ( 15 ) , stromal ( 9 )

Upstream Regulation
Regulatory protein:
DAPK1 (mouse) ( 1 )
Putative in vivo kinases:
MAPKAPK2 (human) ( 1 , 2 , 3 , 5 ) , TAK1 (mouse) ( 4 )
Kinases, in vitro:
MAPKAPK2 (human) ( 5 ) , MAPKAPK2 (mouse) ( 2 ) , TAK1 (human) ( 4 )
Treatments:
bacterial infection ( 2 ) , IL-33 ( 7 ) , insulin ( 12 ) , PF3644022 ( 1 , 2 , 5 ) , SB203580 ( 2 ) , SM-164 ( 4 ) , TAK1_inhibitor ( 4 ) , TNF ( 1 , 3 , 4 , 5 )

Downstream Regulation
Effects of modification on RIPK1:
enzymatic activity, induced ( 4 ) , enzymatic activity, inhibited ( 4 ) , molecular association, regulation ( 4 , 5 )
Effects of modification on biological processes:
apoptosis, inhibited ( 1 , 2 , 4 , 5 )
Induce interaction with:
RIPK3 (mouse) ( 4 )
Inhibit interaction with:
FADD (human) ( 5 ) , FADD (mouse) ( 4 , 5 )

References 

1

Wu YH, et al. (2020) Tumor suppressor death-associated protein kinase 1 inhibits necroptosis by p38 MAPK activation. Cell Death Dis 11, 305
32366830   Curated Info

2

Menon MB, et al. (2017) p38(MAPK)/MK2-dependent phosphorylation controls cytotoxic RIPK1 signalling in inflammation and infection. Nat Cell Biol 19, 1248-1259
28920954   Curated Info

3

Dondelinger Y, et al. (2017) MK2 phosphorylation of RIPK1 regulates TNF-mediated cell death. Nat Cell Biol 19, 1237-1247
28920952   Curated Info

4

Geng J, et al. (2017) Regulation of RIPK1 activation by TAK1-mediated phosphorylation dictates apoptosis and necroptosis. Nat Commun 8, 359
28842570   Curated Info

5

Jaco I, et al. (2017) MK2 Phosphorylates RIPK1 to Prevent TNF-Induced Cell Death. Mol Cell 66, 698-710.e5
28506461   Curated Info

6

Sacco F, et al. (2016) Glucose-regulated and drug-perturbed phosphoproteome reveals molecular mechanisms controlling insulin secretion. Nat Commun 7, 13250
27841257   Curated Info

7

Pinto SM, et al. (2015) Quantitative phosphoproteomic analysis of IL-33-mediated signaling. Proteomics 15, 532-44
25367039   Curated Info

8

Reinartz M, Raupach A, Kaisers W, Gödecke A (2014) AKT1 and AKT2 induce distinct phosphorylation patterns in HL-1 cardiac myocytes. J Proteome Res 13, 4232-45
25162660   Curated Info

9

Mertins P, et al. (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol Cell Proteomics 13, 1690-704
24719451   Curated Info

10

Gnad F, et al. (2013) Systems-wide Analysis of K-Ras, Cdc42, and PAK4 Signaling by Quantitative Phosphoproteomics. Mol Cell Proteomics 12, 2070-80
23608596   Curated Info

11

Wilson-Grady JT, Haas W, Gygi SP (2013) Quantitative comparison of the fasted and re-fed mouse liver phosphoproteomes using lower pH reductive dimethylation. Methods 61, 277-86
23567750   Curated Info

12

Humphrey SJ, et al. (2013) Dynamic Adipocyte Phosphoproteome Reveals that Akt Directly Regulates mTORC2. Cell Metab 17, 1009-20
23684622   Curated Info

13

Wu X, et al. (2012) Investigation of receptor interacting protein (RIP3)-dependent protein phosphorylation by quantitative phosphoproteomics. Mol Cell Proteomics 11, 1640-51
22942356   Curated Info

14

Grimsrud PA, et al. (2012) A quantitative map of the liver mitochondrial phosphoproteome reveals posttranslational control of ketogenesis. Cell Metab 16, 672-83
23140645   Curated Info

15

Huttlin EL, et al. (2010) A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 143, 1174-89
21183079   Curated Info

16

Villén J, Beausoleil SA, Gerber SA, Gygi SP (2007) Large-scale phosphorylation analysis of mouse liver. Proc Natl Acad Sci U S A 104, 1488-93
17242355   Curated Info