Ser47
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.5.9.3
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser47  -  PPP1R7 (human)

Site Information
VADLsEQsLkDGEEr   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 468498
Available spectra:  1 CST

In vivo Characterization
Methods used to characterize site in vivo:
mass spectrometry ( 2 , 3 , 4 , 5 , 6 , 7 , 9 , 11 , 12 , 13 , 14 , 15 )
Disease tissue studied:
breast cancer ( 3 ) , HER2 positive breast cancer ( 2 ) , luminal A breast cancer ( 2 ) , luminal B breast cancer ( 2 ) , breast cancer, triple negative ( 2 ) , cervical cancer ( 14 ) , cervical adenocarcinoma ( 14 ) , lung cancer ( 7 ) , non-small cell lung cancer ( 7 ) , non-small cell lung adenocarcinoma ( 7 ) , non-small cell large cell lung carcinoma ( 7 ) , melanoma skin cancer ( 4 )
Relevant cell line - cell type - tissue:

Upstream Regulation
Kinases, in vitro:
PLK1 (human) ( 1 )
Treatments:
BI2536 ( 11 ) , ionizing_radiation ( 13 ) , nocodazole ( 14 )

References 

1

Duan H, et al. (2016) Phosphorylation of PP1 Regulator Sds22 by PLK1 Ensures Accurate Chromosome Segregation. J Biol Chem 291, 21123-21136
27557660   Curated Info

2

Mertins P, et al. (2016) Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534, 55-62
27251275   Curated Info

3

Carrier M, et al. (2016) Phosphoproteome and Transcriptome of RA-Responsive and RA-Resistant Breast Cancer Cell Lines. PLoS One 11, e0157290
27362937   Curated Info

4

Stuart SA, et al. (2015) A Phosphoproteomic Comparison of B-RAFV600E and MKK1/2 Inhibitors in Melanoma Cells. Mol Cell Proteomics 14, 1599-615
25850435   Curated Info

5

Sharma K, et al. (2014) Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep 8, 1583-94
25159151   Curated Info

6

Bian Y, et al. (2014) An enzyme assisted RP-RPLC approach for in-depth analysis of human liver phosphoproteome. J Proteomics 96, 253-62
24275569   Curated Info

7

Rikova K, Hall B (2013) CST Curation Set: 20740, 21167, 30170, 30171, 30172; Year: 2013; Biosample/Treatment: cell line, H2228, H3122, HCC78, H661, H1781; Disease: -; TMT: Y; Specificities of Antibodies Used to Purify Peptides prior to LCMS: pY, p[ST], RXXp[ST], pSQ, p[ST]QG, LXRXXp[ST], p[ST]P
Curated Info

8

Shiromizu T, et al. (2013) Identification of missing proteins in the neXtProt database and unregistered phosphopeptides in the PhosphoSitePlus database as part of the Chromosome-centric Human Proteome Project. J Proteome Res 12, 2414-21
23312004   Curated Info

9

Franz-Wachtel M, et al. (2012) Global detection of protein kinase D-dependent phosphorylation events in nocodazole-treated human cells. Mol Cell Proteomics 11, 160-70
22496350   Curated Info

10

Beli P, et al. (2012) Proteomic Investigations Reveal a Role for RNA Processing Factor THRAP3 in the DNA Damage Response. Mol Cell 46, 212-25
22424773   Curated Info

11

Kettenbach AN, et al. (2011) Quantitative phosphoproteomics identifies substrates and functional modules of aurora and polo-like kinase activities in mitotic cells. Sci Signal 4, rs5
21712546   Curated Info

12

Christensen GL, et al. (2010) Quantitative phosphoproteomics dissection of seven-transmembrane receptor signaling using full and biased agonists. Mol Cell Proteomics 9, 1540-53
20363803   Curated Info

13

Bennetzen MV, et al. (2010) Site-specific phosphorylation dynamics of the nuclear proteome during the DNA damage response. Mol Cell Proteomics 9, 1314-23
20164059   Curated Info

14

Olsen JV, et al. (2010) Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal 3, ra3
20068231   Curated Info

15

Pan C, Olsen JV, Daub H, Mann M (2009) Global effects of kinase inhibitors on signaling networks revealed by quantitative phosphoproteomics. Mol Cell Proteomics 8, 2796-808
19651622   Curated Info