Ser4359
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus®
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser4359  -  MLL4 (human)

Site Information
EPPPGRVsPAAAQLA   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 4790862

In vivo Characterization
Methods used to characterize site in vivo:
mass spectrometry ( 1 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 14 , 15 , 16 , 17 , 18 , 19 )
Disease tissue studied:
breast cancer ( 3 , 6 ) , breast ductal carcinoma ( 6 ) , HER2 positive breast cancer ( 1 ) , luminal A breast cancer ( 1 ) , luminal B breast cancer ( 1 ) , breast cancer, surrounding tissue ( 1 ) , breast cancer, triple negative ( 1 ) , cervical cancer ( 17 ) , cervical adenocarcinoma ( 17 ) , lung cancer ( 11 , 15 ) , non-small cell lung cancer ( 11 ) , lymphoma ( 7 ) , follicular lymphoma ( 7 ) , mantle cell lymphoma ( 7 ) , melanoma skin cancer ( 4 )
Relevant cell line - cell type - tissue:
293 (epithelial) [ADRB1 (human), no information, overexpresses human beta1-adrenergic (ß1AR- HEK293)] ( 19 ) , 293E (epithelial) ( 14 ) , breast ( 1 , 6 ) , BT-474 (breast cell) ( 3 ) , CL1-0 (pulmonary) ( 15 ) , CL1-1 (pulmonary) ( 15 ) , CL1-2 (pulmonary) ( 15 ) , CL1-5 (pulmonary) ( 15 ) , FL-18 (B lymphocyte) ( 7 ) , Flp-In T-Rex-293 (epithelial) ( 12 ) , Flp-In T-Rex-293 (epithelial) [PRKD1 (human), genetic knockin] ( 12 ) , GP293 (fibroblast) [NPM-ALK (human), transfection] ( 16 ) , H2077 (pulmonary) ( 11 ) , H322M (pulmonary) ( 11 ) , HeLa (cervical) ( 5 , 10 , 19 ) , HeLa S3 (cervical) ( 17 ) , Jurkat (T lymphocyte) ( 9 , 18 ) , K562 (erythroid) ( 10 ) , MCF-7 (breast cell) ( 3 ) , OCI-ly1 (B lymphocyte) ( 7 ) , REC-1 (B lymphocyte) ( 7 ) , SH-SY5Y (neural crest) [LRRK2 (human), transfection, over-expression of LRRK2(G2019S)] ( 8 ) , SU-DHL-4 (B lymphocyte) ( 7 ) , UPN-1 (B lymphocyte) ( 7 ) , WM239A (epidermal) ( 4 )

Upstream Regulation
Treatments:
ischemia ( 6 ) , metastatic potential ( 15 )

References 

1

Mertins P, et al. (2016) Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534, 55-62
27251275   Curated Info

2

Boeing S, et al. (2016) Multiomic Analysis of the UV-Induced DNA Damage Response. Cell Rep 15, 1597-1610
27184836   Curated Info

3

Carrier M, et al. (2016) Phosphoproteome and Transcriptome of RA-Responsive and RA-Resistant Breast Cancer Cell Lines. PLoS One 11, e0157290
27362937   Curated Info

4

Stuart SA, et al. (2015) A Phosphoproteomic Comparison of B-RAFV600E and MKK1/2 Inhibitors in Melanoma Cells. Mol Cell Proteomics 14, 1599-615
25850435   Curated Info

5

Sharma K, et al. (2014) Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep 8, 1583-94
25159151   Curated Info

6

Mertins P, et al. (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol Cell Proteomics 13, 1690-704
24719451   Curated Info

7

Rolland D, et al. (2014) Global phosphoproteomic profiling reveals distinct signatures in B-cell non-Hodgkin lymphomas. Am J Pathol 184, 1331-42
24667141   Curated Info

8

Luerman GC, et al. (2014) Phosphoproteomic evaluation of pharmacological inhibition of leucine-rich repeat kinase 2 reveals significant off-target effects of LRRK-2-IN-1. J Neurochem 128, 561-76
24117733   Curated Info

9

Mertins P, et al. (2013) Integrated proteomic analysis of post-translational modifications by serial enrichment. Nat Methods 10, 634-7
23749302   Curated Info

10

Zhou H, et al. (2013) Toward a comprehensive characterization of a human cancer cell phosphoproteome. J Proteome Res 12, 260-71
23186163   Curated Info

11

Klammer M, et al. (2012) Phosphosignature predicts dasatinib response in non-small cell lung cancer. Mol Cell Proteomics 11, 651-68
22617229   Curated Info

12

Franz-Wachtel M, et al. (2012) Global detection of protein kinase D-dependent phosphorylation events in nocodazole-treated human cells. Mol Cell Proteomics 11, 160-70
22496350   Curated Info

13

Beli P, et al. (2012) Proteomic Investigations Reveal a Role for RNA Processing Factor THRAP3 in the DNA Damage Response. Mol Cell 46, 212-25
22424773   Curated Info

14

Hsu PP, et al. (2011) The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332, 1317-22
21659604   Curated Info

15

Wang YT, et al. (2010) An informatics-assisted label-free quantitation strategy that depicts phosphoproteomic profiles in lung cancer cell invasion. J Proteome Res 9, 5582-97
20815410   Curated Info

16

Wu F, et al. (2010) Studies of phosphoproteomic changes induced by nucleophosmin-anaplastic lymphoma kinase (ALK) highlight deregulation of tumor necrosis factor (TNF)/Fas/TNF-related apoptosis-induced ligand signaling pathway in ALK-positive anaplastic large cell lymphoma. Mol Cell Proteomics 9, 1616-32
20393185   Curated Info

17

Olsen JV, et al. (2010) Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal 3, ra3
20068231   Curated Info

18

Mayya V, et al. (2009) Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions. Sci Signal 2, ra46
19690332   Curated Info

19

Ruse CI, et al. (2008) Motif-specific sampling of phosphoproteomes. J Proteome Res 7, 2140-50
18452278   Curated Info