Ser52
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus®
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser52  -  CSDA (mouse)

Site Information
PAALLAGsPGGDAAP   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 4780225

In vivo Characterization
Methods used to characterize site in vivo:
mass spectrometry ( 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 )
Disease tissue studied:
anthrax infection ( 10 ) , leukemia ( 7 ) , acute myelogenous leukemia ( 7 )
Relevant cell line - cell type - tissue:
'3T3-L1, differentiated' (adipocyte) ( 4 ) , blood ( 7 ) , Hepa 1-6 (epithelial) ( 11 ) , HL-1 (myocyte) ( 3 ) , HL-1 (myocyte) [Akt1 (mouse), knockdown, stable lentiviral expression of Akt1 shRNA] ( 3 ) , HL-1 (myocyte) [Akt2 (mouse), knockdown, stable lentiviral expression of Akt2 shRNA] ( 3 ) , macrophage-peritoneum ( 6 ) , MC3T3-E1 (preosteoblast) ( 2 ) , MEF (fibroblast) ( 5 , 9 ) , MEF (fibroblast) [p53 (mouse), homozygous knockout] ( 8 ) , MEF (fibroblast) [Raptor (mouse), knockdown] ( 5 ) , MEF (fibroblast) [RICTOR (mouse), knockdown] ( 5 ) , MEF (fibroblast) [TSC2 (mouse), homozygous knockout] ( 9 ) , spleen ( 10 )

Upstream Regulation
Regulatory protein:
Raptor (mouse) ( 5 ) , RICTOR (mouse) ( 5 )

References 

1

Sacco F, et al. (2016) Glucose-regulated and drug-perturbed phosphoproteome reveals molecular mechanisms controlling insulin secretion. Nat Commun 7, 13250
27841257   Curated Info

2

Williams GR, et al. (2016) Exploring G protein-coupled receptor signaling networks using SILAC-based phosphoproteomics. Methods 92, 36-50
26160508   Curated Info

3

Reinartz M, Raupach A, Kaisers W, Gödecke A (2014) AKT1 and AKT2 induce distinct phosphorylation patterns in HL-1 cardiac myocytes. J Proteome Res 13, 4232-45
25162660   Curated Info

4

Humphrey SJ, et al. (2013) Dynamic Adipocyte Phosphoproteome Reveals that Akt Directly Regulates mTORC2. Cell Metab 17, 1009-20
23684622   Curated Info

5

Robitaille AM, et al. (2013) Quantitative phosphoproteomics reveal mTORC1 activates de novo pyrimidine synthesis. Science 339, 1320-3
23429704   Curated Info

6

Wu X, et al. (2012) Investigation of receptor interacting protein (RIP3)-dependent protein phosphorylation by quantitative phosphoproteomics. Mol Cell Proteomics 11, 1640-51
22942356   Curated Info

7

Trost M, et al. (2012) Posttranslational regulation of self-renewal capacity: insights from proteome and phosphoproteome analyses of stem cell leukemia. Blood 120, e17-27
22802335   Curated Info

8

Hsu PP, et al. (2011) The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332, 1317-22
21659604   Curated Info

9

Yu Y, et al. (2011) Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science 332, 1322-6
21659605   Curated Info

10

Manes NP, et al. (2011) Discovery of mouse spleen signaling responses to anthrax using label-free quantitative phosphoproteomics via mass spectrometry. Mol Cell Proteomics 10, M110.000927
21189417   Curated Info

11

Pan C, Gnad F, Olsen JV, Mann M (2008) Quantitative phosphoproteome analysis of a mouse liver cell line reveals specificity of phosphatase inhibitors. Proteomics 8, 4534-46
18846507   Curated Info