Ser180
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.5.9.3
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser180  -  PTPRA (mouse)

Site Information
QAGsHSNsFRLSNGR   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 447611

In vivo Characterization
Methods used to characterize site in vivo:
immunoprecipitation ( 10 ) , mass spectrometry ( 2 , 3 , 5 , 6 , 7 , 8 , 9 , 11 ) , mutation of modification site ( 10 , 12 ) , phospho-antibody ( 10 , 12 ) , western blotting ( 10 , 12 )
Relevant cell line - cell type - tissue:
'3T3-L1, differentiated' (adipocyte) ( 2 , 5 ) , 293 (epithelial) ( 10 ) , brain ( 9 ) , fibroblast ( 12 ) , liver ( 7 ) , liver [leptin (mouse), homozygous knockout] ( 7 ) , macrophage-bone marrow ( 8 ) , macrophage-bone marrow [DUSP1 (mouse), homozygous knockout] ( 8 ) , macrophage-peritoneum [MPRIP (mouse), homozygous knockout] ( 6 ) , neuron-'brain, cerebral cortex' ( 12 ) , neuron-'brain, hippocampus' ( 12 ) , RAW 264.7 (macrophage) ( 3 ) , RAW 267.4 (macrophage) ( 11 )

Upstream Regulation
Regulatory protein:
NCAM1 (mouse) ( 12 )
Putative in vivo kinases:
CAMK2A (mouse) ( 12 ) , PKCA (human) ( 13 )
Kinases, in vitro:
CAMK2A (human) ( 12 ) , PKCA (rat) ( 13 )
Treatments:
anti-NCAM ( 12 ) , KN-62 ( 12 ) , nocodazole ( 10 ) , okadaic_acid ( 10 ) , phorbol_ester ( 13 ) , siRNA ( 10 ) , taxol ( 10 )

Downstream Regulation
Effects of modification on PTPRA:
enzymatic activity, induced ( 12 )
Effects of modification on biological processes:
cytoskeletal reorganization ( 12 )

References 

1

Sacco F, et al. (2016) Glucose-regulated and drug-perturbed phosphoproteome reveals molecular mechanisms controlling insulin secretion. Nat Commun 7, 13250
27841257   Curated Info

2

Minard AY, et al. (2016) mTORC1 Is a Major Regulatory Node in the FGF21 Signaling Network in Adipocytes. Cell Rep 17, 29-36
27681418   Curated Info

3

Pinto SM, et al. (2015) Quantitative phosphoproteomic analysis of IL-33-mediated signaling. Proteomics 15, 532-44
25367039   Curated Info

4

Mertins P, et al. (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol Cell Proteomics 13, 1690-704
24719451   Curated Info

5

Humphrey SJ, et al. (2013) Dynamic Adipocyte Phosphoproteome Reveals that Akt Directly Regulates mTORC2. Cell Metab 17, 1009-20
23684622   Curated Info

6

Wu X, et al. (2012) Investigation of receptor interacting protein (RIP3)-dependent protein phosphorylation by quantitative phosphoproteomics. Mol Cell Proteomics 11, 1640-51
22942356   Curated Info

7

Grimsrud PA, et al. (2012) A quantitative map of the liver mitochondrial phosphoproteome reveals posttranslational control of ketogenesis. Cell Metab 16, 672-83
23140645   Curated Info

8

Weintz G, et al. (2010) The phosphoproteome of toll-like receptor-activated macrophages. Mol Syst Biol 6, 371
20531401   Curated Info

9

Wiƛniewski JR, et al. (2010) Brain phosphoproteome obtained by a FASP-based method reveals plasma membrane protein topology. J Proteome Res 9, 3280-9
20415495   Curated Info

10

Vacaru AM, den Hertog J (2010) Serine Dephosphorylation of Receptor Protein Tyrosine Phosphatase {alpha} in Mitosis Induces Src Binding and Activation. Mol Cell Biol 30, 2850-61
20385765   Curated Info

11

Trost M, et al. (2009) The phagosomal proteome in interferon-gamma-activated macrophages. Immunity 30, 143-54
19144319   Curated Info

12

Bodrikov V, et al. (2008) NCAM induces CaMKIIalpha-mediated RPTPalpha phosphorylation to enhance its catalytic activity and neurite outgrowth. J Cell Biol 182, 1185-200
18809727   Curated Info

13

Tracy S, van der Geer P, Hunter T (1995) The receptor-like protein-tyrosine phosphatase, RPTP alpha, is phosphorylated by protein kinase C on two serines close to the inner face of the plasma membrane. J Biol Chem 270, 10587-94
7537734   Curated Info