Thr286
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.5.9
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Thr286  -  CAMK2A (mouse)

Site Information
sCMHRQEtVDCLkkF   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 447797

In vivo Characterization
Methods used to characterize site in vivo:
immunoassay ( 11 ) , immunoprecipitation ( 7 , 25 ) , mass spectrometry ( 4 , 6 , 8 , 17 , 18 , 19 , 23 , 24 , 26 , 31 , 33 , 34 , 35 , 39 , 41 , 42 , 43 , 44 , 47 , 50 , 52 , 53 , 54 , 57 , 59 , 61 ) , mass spectrometry (in vitro) ( 2 ) , mutation of modification site ( 2 , 3 , 7 , 29 , 48 , 51 , 65 ) , phospho-antibody ( 2 , 5 , 7 , 9 , 10 , 11 , 13 , 14 , 15 , 16 , 22 , 27 , 28 , 36 , 37 , 38 , 40 , 45 , 46 , 55 , 56 , 58 , 60 , 63 , 65 , 66 , 67 ) , western blotting ( 2 , 5 , 7 , 9 , 10 , 11 , 13 , 14 , 15 , 16 , 22 , 25 , 27 , 28 , 36 , 37 , 38 , 40 , 45 , 46 , 55 , 56 , 58 , 60 , 63 )
Disease tissue studied:
neuroblastoma ( 2 , 3 ) , pancreatic cancer ( 22 ) , pancreatic carcinoma ( 22 ) , melanoma skin cancer ( 47 )
Relevant cell line - cell type - tissue:
'3T3-L1, differentiated' (adipocyte) ( 4 , 8 , 18 ) , 'brain, cerebellum' ( 52 ) , 'brain, cerebral cortex' ( 41 , 52 , 57 , 66 ) , 'brain, cerebral cortex' [CAMK2A (mouse), transgenic] ( 48 ) , 'brain, forebrain' ( 27 ) , 'brain, hippocampus' ( 2 , 37 , 38 , 46 , 51 , 56 , 60 , 63 , 66 , 67 ) , 'brain, hippocampus, dentate gyrus' ( 52 ) , 'brain, midbrain' ( 52 ) , 'brain, striatum' ( 40 , 58 ) , 'brain, visual cortex' ( 65 ) , 'muscle, skeletal' ( 5 , 22 ) , 'neuron, dorsal horn'-spinal cord ( 15 ) , 'neuron, hippocampal' ( 36 ) , 293 (epithelial) ( 40 ) , 3T3 (fibroblast) ( 7 , 50 ) , brain ( 3 , 22 , 26 , 33 , 34 , 43 , 44 , 53 , 54 , 59 ) , FDCP-1 (myeloid) ( 28 ) , fibroblast-lung ( 35 , 39 ) , heart ( 10 , 19 , 22 ) , HEK293-A (epithelial) ( 11 ) , HEK293T (epithelial) ( 2 ) , HeLa (cervical) ( 25 ) , INS-1 (pancreatic) ( 22 ) , liver ( 17 , 24 , 42 ) , liver [leptin (mouse), homozygous knockout] ( 24 ) , macrophage-peritoneum ( 23 ) , macrophage-peritoneum [MPRIP (mouse), homozygous knockout] ( 23 ) , MEF (fibroblast) [p53 (mouse), homozygous knockout] ( 31 ) , myocardium ( 16 ) , myocyte ( 11 ) , myocyte-heart ( 13 , 14 , 45 ) , neuron ( 55 ) , neuron-'brain, hippocampus' ( 25 ) , neuron-brain [CAMK2A (mouse), genetic knockin] ( 29 ) , neuron:postsynaptic density-'brain, hippocampus, CA1 region' ( 6 ) , SH-SY5Y (neural crest) ( 2 , 3 ) , skin [mGluR1 (mouse), transgenic, TG mutant mice] ( 47 ) , vascular smooth muscle cell ('muscle, smooth') [EphB4 (mouse), homozygous knockout] ( 9 )

Upstream Regulation
Regulatory protein:
5-HT(1A) (mouse) ( 51 ) , Abi-1 (mouse) ( 25 ) , ARRB2 (mouse) ( 11 ) , DRD1 (mouse) ( 40 ) , DRD2 (mouse) ( 40 ) , EphB4 (mouse) ( 9 ) , FZD8 (mouse) ( 7 ) , HRas (mouse) ( 7 ) , KRas (mouse) ( 7 ) , nNOS (mouse) ( 13 ) , PPP1CA (mouse) ( 66 ) , PTEN (human) ( 2 ) , RGS14 (mouse) ( 55 ) , UBE3A (mouse) ( 63 )
Putative in vivo kinases:
CAMK2A (mouse) ( 2 , 11 , 22 , 67 )
Kinases, in vitro:
CAMK2A (mouse) ( 64 )
Phosphatases, in vitro:
PPM1F (human) ( 62 )
Treatments:
8-CPT-2Me-cAMP ( 11 ) , 9d ( 46 ) , AMPA ( 25 ) , anti-NCAM ( 49 ) , APV ( 15 , 67 ) , bicuculline ( 15 , 25 ) , bisindolylmaleimide ( 45 ) , Ca(2+) ( 67 ) , calyculin_A ( 67 ) , cold adaption ( 5 ) , cold_water_stress ( 56 ) , colforsin ( 58 , 67 ) , cpTOME ( 45 ) , DAMGO ( 55 ) , depolarization ( 57 ) , electrical_stimulation ( 67 ) , ether ( 56 ) , eticlopride ( 40 ) , food deprivation ( 56 ) , ginsenoside-Rg1 ( 36 ) , glucose ( 22 ) , glutamic acid ( 25 ) , glycine ( 25 ) , hydroxyurea ( 10 ) , IL-3 ( 28 ) , insulin ( 18 ) , ionomycin ( 25 ) , isoproterenol ( 11 , 13 , 45 , 67 ) , KCl ( 25 ) , KN-62 ( 49 ) , KN-93 ( 36 ) , learning ( 66 ) , long-term_potentiation ( 6 , 27 , 38 , 60 ) , LY294002 ( 18 ) , MK-2206 ( 18 ) , MK801 ( 40 , 55 ) , morphine ( 55 ) , nerve_damage ( 60 ) , nifedipine ( 49 ) , NMDA ( 25 ) , okadaic_acid ( 50 ) , PAF ( 37 ) , PCA4248 ( 37 ) , pimozide ( 49 ) , PKI ( 11 ) , pressure ( 16 ) , prostratin ( 7 ) , quinpirole ( 40 ) , SCH_23390 ( 40 ) , SKF83959 ( 40 ) , taxol ( 11 ) , WAY100635 ( 51 )

Downstream Regulation
Effects of modification on CAMK2A:
activity, induced ( 13 ) , enzymatic activity, induced ( 2 , 11 , 36 , 46 , 48 , 65 ) , intracellular localization ( 2 , 51 ) , molecular association, regulation ( 2 , 15 , 32 , 64 ) , phosphorylation ( 29 ) , protein conformation ( 32 )
Effects of modification on biological processes:
cell growth, altered ( 48 ) , signaling pathway regulation ( 13 , 15 )
Induce interaction with:
Calmodulin (human) ( 32 ) , NMDAR1 (human) ( 15 ) , NMDAR1 (rat) ( 64 ) , NMDAR2B (human) ( 2 )

References 

1

Wang Z, et al. (2018) Quantitative phosphoproteomic analysis of the molecular substrates of sleep need. Nature 558, 435-439
29899451   Curated Info

2

Wang P, et al. (2017) PTENα Modulates CaMKII Signaling and Controls Contextual Fear Memory and Spatial Learning. Cell Rep 19, 2627-2641
28636948   Curated Info

3

Rostas JA, et al. (2017) Ischaemia- and excitotoxicity-induced CaMKII-Mediated neuronal cell death: The relative roles of CaMKII autophosphorylation at T286 and T253. Neurochem Int 104, 6-10
28065796   Curated Info

4

Minard AY, et al. (2016) mTORC1 Is a Major Regulatory Node in the FGF21 Signaling Network in Adipocytes. Cell Rep 17, 29-36
27681418   Curated Info

5

Bal NC, et al. (2016) Increased Reliance on Muscle-based Thermogenesis upon Acute Minimization of Brown Adipose Tissue Function. J Biol Chem 291, 17247-57
27298322   Curated Info

6

Li J, et al. (2016) Long-term potentiation modulates synaptic phosphorylation networks and reshapes the structure of the postsynaptic interactome. Sci Signal 9, rs8
27507650   Curated Info

7

Wang MT, et al. (2015) K-Ras Promotes Tumorigenicity through Suppression of Non-canonical Wnt Signaling. Cell 163, 1237-51
26590425   Curated Info

8

Parker BL, et al. (2015) Targeted phosphoproteomics of insulin signaling using data-independent acquisition mass spectrometry. Sci Signal 8, rs6
26060331   Curated Info

9

Wang Y, et al. (2015) EPHB4 Protein Expression in Vascular Smooth Muscle Cells Regulates Their Contractility, and EPHB4 Deletion Leads to Hypotension in Mice. J Biol Chem 290, 14235-44
25903126   Curated Info

10

Respress JL, et al. (2014) Long-term simulated microgravity causes cardiac RyR2 phosphorylation and arrhythmias in mice. Int J Cardiol 176, 994-1000
25227892   Curated Info

11

Dybkova N, et al. (2014) Tubulin polymerization disrupts cardiac β-adrenergic regulation of late INa. Cardiovasc Res 103, 168-77
24812278   Curated Info

12

Mertins P, et al. (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol Cell Proteomics 13, 1690-704
24719451   Curated Info

13

Curran J, et al. (2014) Nitric Oxide-Dependent Activation of CaMKII Increases Diastolic Sarcoplasmic Reticulum Calcium Release in Cardiac Myocytes in Response to Adrenergic Stimulation. PLoS One 9, e87495
24498331   Curated Info

14

Besser J, et al. (2014) MiRNA-1/133a Clusters Regulate Adrenergic Control of Cardiac Repolarization. PLoS One 9, e113449
25415383   Curated Info

15

Suo ZW, Fan QQ, Yang X, Hu XD (2013) Ca(2+) /calmodulin-dependent protein kinase II in spinal dorsal horn contributes to the pain hypersensitivity induced by γ-aminobutyric acid type a receptor inhibition. J Neurosci Res 91, 1473-82
24038144   Curated Info

16

Toischer K, et al. (2013) Role of late sodium current as a potential arrhythmogenic mechanism in the progression of pressure-induced heart disease. J Mol Cell Cardiol 61, 111-22
23570977   Curated Info

17

Wilson-Grady JT, Haas W, Gygi SP (2013) Quantitative comparison of the fasted and re-fed mouse liver phosphoproteomes using lower pH reductive dimethylation. Methods 61, 277-86
23567750   Curated Info

18

Humphrey SJ, et al. (2013) Dynamic Adipocyte Phosphoproteome Reveals that Akt Directly Regulates mTORC2. Cell Metab 17, 1009-20
23684622   Curated Info

19

Lundby A, et al. (2013) In vivo phosphoproteomics analysis reveals the cardiac targets of β-adrenergic receptor signaling. Sci Signal 6, rs11
23737553   Curated Info

20

Shonesy BC, et al. (2013) CaMKII regulates diacylglycerol lipase-α and striatal endocannabinoid signaling. Nat Neurosci 16, 456-63
23502535   Curated Info

21

Robison AJ, et al. (2013) Behavioral and structural responses to chronic cocaine require a feedforward loop involving ΔFosB and calcium/calmodulin-dependent protein kinase II in the nucleus accumbens shell. J Neurosci 33, 4295-307
23467346   Curated Info

22

Dixit SS, et al. (2013) Effects of CaMKII-Mediated Phosphorylation of Ryanodine Receptor Type 2 on Islet Calcium Handling, Insulin Secretion, and Glucose Tolerance. PLoS One 8, e58655
23516528   Curated Info

23

Wu X, et al. (2012) Investigation of receptor interacting protein (RIP3)-dependent protein phosphorylation by quantitative phosphoproteomics. Mol Cell Proteomics 11, 1640-51
22942356   Curated Info

24

Grimsrud PA, et al. (2012) A quantitative map of the liver mitochondrial phosphoproteome reveals posttranslational control of ketogenesis. Cell Metab 16, 672-83
23140645   Curated Info

25

Park E, Chi S, Park D (2012) Activity-dependent modulation of the interaction between CaMKIIα and Abi1 and its involvement in spine maturation. J Neurosci 32, 13177-88
22993434   Curated Info

26

Goswami T, et al. (2012) Comparative phosphoproteomic analysis of neonatal and adult murine brain. Proteomics 12, 2185-9
22807455   Curated Info

27

Halt AR, et al. (2012) CaMKII binding to GluN2B is critical during memory consolidation. EMBO J 31, 1203-16
22234183   Curated Info

28

Hojabrpour P, et al. (2012) CaMKII-γ mediates phosphorylation of BAD at Ser170 to regulate cytokine-dependent survival and proliferation. Biochem J 442, 139-49
22103330   Curated Info

29

Radwanska K, et al. (2011) Mechanism for long-term memory formation when synaptic strengthening is impaired. Proc Natl Acad Sci U S A 108, 18471-5
22025701   Curated Info

30

Gustin RM, et al. (2011) Loss of Thr286 phosphorylation disrupts synaptic CaMKIIα targeting, NMDAR activity and behavior in pre-adolescent mice. Mol Cell Neurosci 47, 286-92
21627991   Curated Info

31

Hsu PP, et al. (2011) The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332, 1317-22
21659604   Curated Info

32

Hoffman L, Stein RA, Colbran RJ, Mchaourab HS (2011) Conformational changes underlying calcium/calmodulin-dependent protein kinase II activation. EMBO J 30, 1251-62
21343908   Curated Info

33

Possemato A (2010) CST Curation Set: 9876; Year: 2010; Biosample/Treatment: tissue, brain/untreated; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: RXXp[ST] Antibodies Used to Purify Peptides prior to LCMS: Phospho-Akt Substrate (RXRXXS/T) (110B7) Rabbit mAb Cat#: 9614, PTMScan(R) Phospho-Akt Substrate Motif (RXXS*/T*) Immunoaffinity Beads Cat#: 1978
Curated Info

34

Possemato A (2010) CST Curation Set: 9877; Year: 2010; Biosample/Treatment: tissue, brain/untreated; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: RXXp[ST] Antibodies Used to Purify Peptides prior to LCMS: Phospho-Akt Substrate (RXRXXS/T) (110B7) Rabbit mAb Cat#: 9614, PTMScan(R) Phospho-Akt Substrate Motif (RXXS*/T*) Immunoaffinity Beads Cat#: 1978
Curated Info

35

Guo A (2010) CST Curation Set: 9810; Year: 2010; Biosample/Treatment: cell line, mouse lung fibroblasts/untreated; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: RXXp[ST]
Curated Info

36

Liu ZJ, et al. (2010) Ginsenoside Rg1 promotes glutamate release via a calcium/calmodulin-dependent protein kinase II-dependent signaling pathway. Brain Res 1333, 1-8
20381470   Curated Info

37

Moriguchi S, Shioda N, Yamamoto Y, Fukunaga K (2010) Platelet-activating factor-induced synaptic facilitation is associated with increased calcium/calmodulin-dependent protein kinase II, protein kinase C and extracellular signal-regulated kinase activities in the rat hippocampal CA1 region. Neuroscience 166, 1158-66
20074623   Curated Info

38

Racaniello M, et al. (2010) Phosphorylation changes of CaMKII, ERK1/2, PKB/Akt kinases and CREB activation during early long-term potentiation at Schaffer collateral-CA1 mouse hippocampal synapses. Neurochem Res 35, 239-46
19731018   Curated Info

39

Guo A (2010) CST Curation Set: 9030; Year: 2010; Biosample/Treatment: cell line, mouse lung fibroblasts/untreated; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: RXXp[ST] Antibodies Used to Purify Peptides prior to LCMS: Phospho-Akt Substrate (RXRXXS/T) (110B7) Rabbit mAb Cat#: 9614, PTMScan(R) Phospho-Akt Substrate Motif (RXXS*/T*) Immunoaffinity Beads Cat#: 1978
Curated Info

40

Ng J, et al. (2010) Activation of calcium/calmodulin-dependent protein kinase IIalpha in the striatum by the heteromeric D1-D2 dopamine receptor complex. Neuroscience 165, 535-41
19837142   Curated Info

41

Tweedie-Cullen RY, Reck JM, Mansuy IM (2009) Comprehensive mapping of post-translational modifications on synaptic, nuclear, and histone proteins in the adult mouse brain. J Proteome Res 8, 4966-82
19737024   Curated Info

42

Guo A (2009) CST Curation Set: 7767; Year: 2009; Biosample/Treatment: tissue, liver/untreated; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: RXXp[ST]
Curated Info

43

Zhou J (2009) CST Curation Set: 7413; Year: 2009; Biosample/Treatment: tissue, brain/untreated; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: HXXp[ST]
Curated Info

44

Zhou J (2009) CST Curation Set: 7383; Year: 2009; Biosample/Treatment: tissue, brain/untreated; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: QXp[ST]
Curated Info

45

Oestreich EA, et al. (2009) Epac and phospholipase Cepsilon regulate Ca2+ release in the heart by activation of protein kinase Cepsilon and calcium-calmodulin kinase II. J Biol Chem 284, 1514-22
18957419   Curated Info

46

Tallent MK, et al. (2009) In vivo modulation of O-GlcNAc levels regulates hippocampal synaptic plasticity through interplay with phosphorylation. J Biol Chem 284, 174-81
19004831   Curated Info

47

Zanivan S, et al. (2008) Solid tumor proteome and phosphoproteome analysis by high resolution mass spectrometry. J Proteome Res 7, 5314-26
19367708   Curated Info

48

Hardingham N, Wright N, Dachtler J, Fox K (2008) Sensory deprivation unmasks a PKA-dependent synaptic plasticity mechanism that operates in parallel with CaMKII. Neuron 60, 861-74
19081380   Curated Info

49

Bodrikov V, et al. (2008) NCAM induces CaMKIIalpha-mediated RPTPalpha phosphorylation to enhance its catalytic activity and neurite outgrowth. J Cell Biol 182, 1185-200
18809727   Curated Info

50

Wang Z, Gucek M, Hart GW (2008) Cross-talk between GlcNAcylation and phosphorylation: site-specific phosphorylation dynamics in response to globally elevated O-GlcNAc. Proc Natl Acad Sci U S A 105, 13793-8
18779572   Curated Info

51

Lo Iacono L, Gross C (2008) Alpha-Ca2+/calmodulin-dependent protein kinase II contributes to the developmental programming of anxiety in serotonin receptor 1A knock-out mice. J Neurosci 28, 6250-7
18550767   Curated Info

52

Trinidad JC, et al. (2008) Quantitative analysis of synaptic phosphorylation and protein expression. Mol Cell Proteomics 7, 684-96
18056256   Curated Info

53

Possemato A (2008) CST Curation Set: 3852; Year: 2008; Biosample/Treatment: tissue, brain/untreated; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: RRXp[ST] Antibodies Used to Purify Peptides prior to LCMS: Phospho-(Ser/Thr) PKA Substrate Antibody Cat#: 9621
Curated Info

54

Possemato A (2008) CST Curation Set: 3853; Year: 2008; Biosample/Treatment: tissue, brain/untreated; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: RXXp[ST] Antibodies Used to Purify Peptides prior to LCMS: Phospho-Akt Substrate (RXRXXS/T) (110B7) Rabbit mAb Cat#: 9614, PTMScan(R) Phospho-Akt Substrate Motif (RXXS*/T*) Immunoaffinity Beads Cat#: 1978
Curated Info

55

Rodríguez-Muñoz M, et al. (2007) RGS14 prevents morphine from internalizing Mu-opioid receptors in periaqueductal gray neurons. Cell Signal 19, 2558-71
17825524   Curated Info

56

Ikeda Y, Ishiguro K, Fujita SC (2007) Ether stress-induced Alzheimer-like tau phosphorylation in the normal mouse brain. FEBS Lett 581, 891-7
17289030   Curated Info

57

Munton RP, et al. (2007) Qualitative and quantitative analyses of protein phosphorylation in naive and stimulated mouse synaptosomal preparations. Mol Cell Proteomics 6, 283-93
17114649   Curated Info

58

Sahin B, et al. (2007) Evaluation of neuronal phosphoproteins as effectors of caffeine and mediators of striatal adenosine A2A receptor signaling. Brain Res 1129, 1-14
17157277   Curated Info

59

Trinidad JC, et al. (2006) Comprehensive identification of phosphorylation sites in postsynaptic density preparations. Mol Cell Proteomics 5, 914-22
16452087   Curated Info

60

Moriguchi S, et al. (2006) Decreased calcium/calmodulin-dependent protein kinase II and protein kinase C activities mediate impairment of hippocampal long-term potentiation in the olfactory bulbectomized mice. J Neurochem 97, 22-9
16515554   Curated Info

61

Trinidad JC, et al. (2005) Phosphorylation state of postsynaptic density proteins. J Neurochem 92, 1306-16
15748150   Curated Info

62

Harvey BP, Banga SS, Ozer HL (2004) Regulation of the multifunctional Ca2+/calmodulin-dependent protein kinase II by the PP2C phosphatase PPM1F in fibroblasts. J Biol Chem 279, 24889-98
15140879   Curated Info

63

Weeber EJ, et al. (2003) Derangements of hippocampal calcium/calmodulin-dependent protein kinase II in a mouse model for Angelman mental retardation syndrome. J Neurosci 23, 2634-44
12684449   Curated Info

64

Leonard AS, et al. (2002) Regulation of calcium/calmodulin-dependent protein kinase II docking to N-methyl-D-aspartate receptors by calcium/calmodulin and alpha-actinin. J Biol Chem 277, 48441-8
12379661   Curated Info

65

Taha S, Hanover JL, Silva AJ, Stryker MP (2002) Autophosphorylation of alphaCaMKII is required for ocular dominance plasticity. Neuron 36, 483-91
12408850   Curated Info

66

Genoux D, et al. (2002) Protein phosphatase 1 is a molecular constraint on learning and memory. Nature 418, 970-5
12198546   Curated Info

67

Makhinson M, Chotiner JK, Watson JB, O'Dell TJ (1999) Adenylyl cyclase activation modulates activity-dependent changes in synaptic strength and Ca2+/calmodulin-dependent kinase II autophosphorylation. J Neurosci 19, 2500-10
10087064   Curated Info