Ser651
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.6.0.2
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser651  -  AR (human)

Site Information
GEASSTTsPTEETTQ   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 448414

In vivo Characterization
Methods used to characterize site in vivo:
[32P] bio-synthetic labeling ( 9 , 10 , 11 ) , immunoassay ( 2 , 4 ) , immunoprecipitation ( 11 ) , mass spectrometry ( 9 , 10 ) , microscopy-colocalization with upstream kinase ( 7 ) , mutation of modification site ( 2 , 7 , 9 , 10 , 11 ) , phospho-antibody ( 2 , 3 , 4 , 5 , 6 , 7 , 8 ) , phosphoamino acid analysis ( 10 ) , phosphopeptide mapping ( 10 ) , western blotting ( 2 , 3 , 4 , 6 , 7 , 11 )
Disease tissue studied:
adrenal cancer ( 2 ) , pheochromocytoma ( 2 ) , prostate cancer ( 4 , 6 , 7 )
Relevant cell line - cell type - tissue:
COS (fibroblast) ( 7 , 8 , 9 , 10 , 11 ) , CV1 (fibroblast) ( 11 ) , LNCaP (prostate cell) ( 4 , 6 , 7 , 10 ) , muscle ( 3 ) , PC-12 (chromaffin) ( 2 ) , prostate ( 5 ) , prostate cell ( 4 )

Upstream Regulation
Putative in vivo kinases:
ERK1 (human) ( 7 ) , JNK1 (human) ( 7 ) , P38A (human) ( 7 )
Kinases, in vitro:
JNK1 (human) ( 7 ) , P38A (human) ( 7 )
Treatments:
androstanolone ( 2 ) , bicalutamide ( 6 ) , calyculin_A ( 11 ) , metribolone ( 6 , 8 , 9 , 10 ) , phorbol_ester ( 7 ) , SB203580 ( 7 ) , SNARE-1 ( 6 ) , SP600125 ( 7 ) , U0126 ( 7 )

Downstream Regulation
Effects of modification on AR:
intracellular localization ( 2 , 7 )
Effects of modification on biological processes:
transcription, altered ( 11 )

Disease / Diagnostics Relevance
Relevant diseases:
prostate cancer ( 10 )

References 

1

Nicoll JX, Fry AC, Mosier EM (2021) Androgen and glucocorticoid receptor phosphorylation following resistance exercise and pre-workout supplementation. Steroids 172, 108859
33974920   Curated Info

2

Arnold FJ, Pluciennik A, Merry DE (2019) Impaired Nuclear Export of Polyglutamine-Expanded Androgen Receptor in Spinal and Bulbar Muscular Atrophy. Sci Rep 9, 119
30644418   Curated Info

3

Nicoll JX, Fry AC, Mosier EM (2019) Sex-based differences in resting MAPK, androgen, and glucocorticoid receptor phosphorylation in human skeletal muscle. Steroids 141, 23-29
30414425   Curated Info

4

Willder JM, et al. (2013) Androgen receptor phosphorylation at serine 515 by Cdk1 predicts biochemical relapse in prostate cancer patients. Br J Cancer 108, 139-48
23321516   Curated Info

5

McCall P, et al. (2013) Androgen receptor phosphorylation at serine 308 and serine 791 predicts enhanced survival in castrate resistant prostate cancer patients. Int J Mol Sci 14, 16656-71
23945560   Curated Info

6

Narayanan R, et al. (2010) Discovery and mechanistic characterization of a novel selective nuclear androgen receptor exporter for the treatment of prostate cancer. Cancer Res 70, 842-51
20068182   Curated Info

7

Gioeli D, et al. (2006) Stress kinase signaling regulates androgen receptor phosphorylation, transcription, and localization. Mol Endocrinol 20, 503-15
16282370   Curated Info

8

Yang CS, et al. (2005) Simian virus 40 small t antigen mediates conformation-dependent transfer of protein phosphatase 2A onto the androgen receptor. Mol Cell Biol 25, 1298-308
15684382   Curated Info

9

Wong HY, et al. (2004) Phosphorylation of androgen receptor isoforms. Biochem J 383, 267-76
15239671   Curated Info

10

Gioeli D, et al. (2002) Androgen receptor phosphorylation. Regulation and identification of the phosphorylation sites. J Biol Chem 277, 29304-14
12015328   Curated Info

11

Zhou ZX, Kemppainen JA, Wilson EM (1995) Identification of three proline-directed phosphorylation sites in the human androgen receptor. Mol Endocrinol 9, 605-15
7565807   Curated Info