Ser308
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.6.0.2
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser308  -  DAPK1 (human)

Site Information
ARKKWkQsVRLISLC   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 448142

In vivo Characterization
Methods used to characterize site in vivo:
electrophoretic mobility shift ( 6 ) , immunoprecipitation ( 1 , 3 , 5 ) , mass spectrometry ( 4 ) , mutation of modification site ( 2 , 3 , 7 , 8 ) , phospho-antibody ( 1 , 3 , 5 , 6 , 7 , 8 ) , western blotting ( 1 , 2 , 3 , 5 , 6 , 7 )
Disease tissue studied:
breast cancer ( 4 ) , breast cancer, triple negative ( 4 )
Relevant cell line - cell type - tissue:
'brain, hippocampus' ( 2 ) , 293 (epithelial) ( 2 , 5 , 6 , 8 ) , breast ( 4 ) , EC (endothelial) ( 1 ) , HEK293T (epithelial) ( 3 ) , HeLa (cervical) ( 6 , 7 , 8 )

Upstream Regulation
Regulatory protein:
PPP2R2A (human) ( 5 )
Putative in vivo kinases:
DAPK1 (human) ( 8 )
Kinases, in vitro:
DAPK1 (human) ( 8 )
Putative upstream phosphatases:
PPP2CA (human) ( 1 , 5 )
Phosphatases, in vitro:
PPP2CA (human) ( 5 )
Treatments:
C6-ceramide ( 7 , 8 ) , Ca(2+) ( 8 ) , ceramide ( 5 ) , double-stranded_RNA ( 3 ) , geldanamycin ( 6 ) , sodium_phosphate ( 1 ) , TNF ( 7 )

Downstream Regulation
Effects of modification on DAPK1:
enzymatic activity, inhibited ( 5 , 6 , 8 ) , molecular association, regulation ( 2 , 6 , 8 ) , phosphorylation ( 1 ) , protein degradation ( 5 , 6 )
Effects of modification on biological processes:
apoptosis, altered ( 5 , 8 ) , cell adhesion, altered ( 5 ) , cell growth, altered ( 8 ) , cytoskeletal reorganization ( 1 )
Induce interaction with:
CAMK2A (human) ( 2 )
Inhibit interaction with:
CHIP (human) ( 6 ) , Calmodulin (human) ( 8 ) , MIB1 (human) ( 6 ) , NMDAR2B (human) ( 2 )

References 

1

Abbasian N, et al. (2020) Inorganic Phosphate (Pi) Signaling in Endothelial Cells: A Molecular Basis for Generation of Endothelial Microvesicles in Uraemic Cardiovascular Disease. Int J Mol Sci 21
32977471   Curated Info

2

Goodell DJ, et al. (2017) DAPK1 Mediates LTD by Making CaMKII/GluN2B Binding LTP Specific. Cell Rep 19, 2231-2243
28614711   Curated Info

3

Willemsen J, et al. (2017) Phosphorylation-Dependent Feedback Inhibition of RIG-I by DAPK1 Identified by Kinome-wide siRNA Screening. Mol Cell 65, 403-415.e8
28132841   Curated Info

4

Mertins P, et al. (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol Cell Proteomics 13, 1690-704
24719451   Curated Info

5

Widau RC, et al. (2010) Protein phosphatase 2A (PP2A) holoenzymes regulate death-associated protein kinase (DAPK) in ceramide-induced anoikis. J Biol Chem 285, 13827-38
20220139   Curated Info

6

Zhang L, Nephew KP, Gallagher PJ (2007) Regulation of death-associated protein kinase. Stabilization by HSP90 heterocomplexes. J Biol Chem 282, 11795-804
17324930   Curated Info

7

Jin Y, Blue EK, Gallagher PJ (2006) Control of death-associated protein kinase (DAPK) activity by phosphorylation and proteasomal degradation. J Biol Chem 281, 39033-40
17056602   Curated Info

8

Shohat G, et al. (2001) The pro-apoptotic function of death-associated protein kinase is controlled by a unique inhibitory autophosphorylation-based mechanism. J Biol Chem 276, 47460-7
11579085   Curated Info