Ser365
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.6.0.2
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser365  -  TRAM1 (human)

Site Information
LTSNVADsPRNKKEK   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 460389

In vivo Characterization
Methods used to characterize site in vivo:
mass spectrometry ( 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 14 , 15 , 16 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 )
Disease tissue studied:
breast cancer ( 3 , 7 , 8 , 15 ) , breast ductal carcinoma ( 7 ) , HER2 positive breast cancer ( 2 ) , luminal A breast cancer ( 2 ) , luminal B breast cancer ( 2 ) , breast cancer, surrounding tissue ( 2 ) , breast cancer, triple negative ( 2 , 7 ) , cervical cancer ( 24 ) , cervical adenocarcinoma ( 24 ) , leukemia ( 18 , 31 ) , acute myelogenous leukemia ( 18 ) , chronic myelogenous leukemia ( 31 ) , lung cancer ( 5 , 10 , 15 ) , non-small cell lung cancer ( 15 ) , non-small cell lung adenocarcinoma ( 5 , 10 ) , ovarian cancer ( 7 ) , pancreatic ductal adenocarcinoma ( 9 ) , melanoma skin cancer ( 4 )
Relevant cell line - cell type - tissue:
'pancreatic, ductal'-pancreas ( 9 ) , 293 (epithelial) ( 26 ) , A498 (renal) ( 22 ) , A549 (pulmonary) ( 11 ) , breast ( 2 , 7 ) , BT-20 (breast cell) ( 15 ) , BT-474 (breast cell) ( 3 ) , BT-549 (breast cell) ( 15 ) , Calu 6 (pulmonary) ( 15 ) , Flp-In T-Rex-293 (epithelial) [PRKD1 (human), genetic knockin] ( 16 ) , Flp-In T-Rex-293 (epithelial) ( 16 ) , H2009 (pulmonary) ( 15 ) , H2077 (pulmonary) ( 15 ) , H2887 (pulmonary) ( 15 ) , H322M (pulmonary) ( 15 ) , HCC1359 (pulmonary) ( 15 ) , HCC1937 (breast cell) ( 15 ) , HCC2279 (pulmonary) ( 15 ) , HCC366 (pulmonary) ( 15 ) , HCC4006 (pulmonary) ( 15 ) , HCC78 (pulmonary) ( 15 ) , HCC827 (pulmonary) ( 15 ) , HeLa (cervical) ( 1 , 6 , 14 , 20 , 30 , 32 , 33 ) , HeLa S3 (cervical) [PLK1 (human), knockdown, Tet-inducible PLK1 siRNA] ( 19 ) , HeLa S3 (cervical) ( 19 , 24 , 29 ) , HeLa_Meta (cervical) ( 21 ) , HeLa_Pro (cervical) ( 21 ) , HeLa_Telo (cervical) ( 21 ) , HMLER ('stem, breast cancer') [CXCR4 (human), knockdown] ( 8 ) , HMLER ('stem, breast cancer') ( 8 ) , HOP62 (pulmonary) ( 15 ) , Jurkat (T lymphocyte) ( 12 , 23 , 27 , 28 ) , K562 (erythroid) ( 14 , 25 , 31 ) , KG-1 (myeloid) ( 18 ) , LCLC-103H (pulmonary) ( 15 ) , LOU-NH91 (squamous) ( 15 ) , lung ( 10 ) , MCF-7 (breast cell) ( 15 ) , MDA-MB-231 (breast cell) ( 15 ) , MDA-MB-468 (breast cell) ( 15 ) , NCI-H1395 (pulmonary) ( 15 ) , NCI-H1568 (pulmonary) ( 15 ) , NCI-H157 (pulmonary) ( 15 ) , NCI-H1648 (pulmonary) ( 15 ) , NCI-H1666 (pulmonary) ( 15 ) , NCI-H2030 (pulmonary) ( 15 ) , NCI-H2172 (pulmonary) ( 15 ) , NCI-H322 (pulmonary) ( 15 ) , NCI-H460 (pulmonary) ( 15 ) , NCI-H520 (squamous) ( 15 ) , NCI-H647 (pulmonary) ( 15 ) , ovary ( 7 ) , PC9 (pulmonary) ( 5 , 15 ) , WM239A (melanocyte) ( 4 )

Upstream Regulation
Regulatory protein:
TBK1 (human) ( 11 )
Treatments:
EGF ( 1 ) , MG132_withdrawal ( 21 ) , nocodazole ( 24 )

References 

1

Huang H, et al. (2016) Simultaneous Enrichment of Cysteine-containing Peptides and Phosphopeptides Using a Cysteine-specific Phosphonate Adaptable Tag (CysPAT) in Combination with titanium dioxide (TiO2) Chromatography. Mol Cell Proteomics 15, 3282-3296
27281782   Curated Info

2

Mertins P, et al. (2016) Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534, 55-62
27251275   Curated Info

3

Carrier M, et al. (2016) Phosphoproteome and Transcriptome of RA-Responsive and RA-Resistant Breast Cancer Cell Lines. PLoS One 11, e0157290
27362937   Curated Info

4

Stuart SA, et al. (2015) A Phosphoproteomic Comparison of B-RAFV600E and MKK1/2 Inhibitors in Melanoma Cells. Mol Cell Proteomics 14, 1599-615
25850435   Curated Info

5

Tsai CF, et al. (2015) Large-scale determination of absolute phosphorylation stoichiometries in human cells by motif-targeting quantitative proteomics. Nat Commun 6, 6622
25814448   Curated Info

6

Sharma K, et al. (2014) Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep 8, 1583-94
25159151   Curated Info

7

Mertins P, et al. (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol Cell Proteomics 13, 1690-704
24719451   Curated Info

8

Yi T, et al. (2014) Quantitative phosphoproteomic analysis reveals system-wide signaling pathways downstream of SDF-1/CXCR4 in breast cancer stem cells. Proc Natl Acad Sci U S A 111, E2182-90
24782546   Curated Info

9

Britton D, et al. (2014) Quantification of pancreatic cancer proteome and phosphorylome: indicates molecular events likely contributing to cancer and activity of drug targets. PLoS One 9, e90948
24670416   Curated Info

10

Schweppe DK, Rigas JR, Gerber SA (2013) Quantitative phosphoproteomic profiling of human non-small cell lung cancer tumors. J Proteomics 91, 286-96
23911959   Curated Info

11

Kim JY, et al. (2013) Dissection of TBK1 signaling via phosphoproteomics in lung cancer cells. Proc Natl Acad Sci U S A 110, 12414-9
23836654   Curated Info

12

Mertins P, et al. (2013) Integrated proteomic analysis of post-translational modifications by serial enrichment. Nat Methods 10, 634-7
23749302   Curated Info

13

Shiromizu T, et al. (2013) Identification of missing proteins in the neXtProt database and unregistered phosphopeptides in the PhosphoSitePlus database as part of the Chromosome-centric Human Proteome Project. J Proteome Res 12, 2414-21
23312004   Curated Info

14

Zhou H, et al. (2013) Toward a comprehensive characterization of a human cancer cell phosphoproteome. J Proteome Res 12, 260-71
23186163   Curated Info

15

Klammer M, et al. (2012) Phosphosignature predicts dasatinib response in non-small cell lung cancer. Mol Cell Proteomics 11, 651-68
22617229   Curated Info

16

Franz-Wachtel M, et al. (2012) Global detection of protein kinase D-dependent phosphorylation events in nocodazole-treated human cells. Mol Cell Proteomics 11, 160-70
22496350   Curated Info

17

Beli P, et al. (2012) Proteomic Investigations Reveal a Role for RNA Processing Factor THRAP3 in the DNA Damage Response. Mol Cell 46, 212-25
22424773   Curated Info

18

Weber C, Schreiber TB, Daub H (2012) Dual phosphoproteomics and chemical proteomics analysis of erlotinib and gefitinib interference in acute myeloid leukemia cells. J Proteomics 75, 1343-56
22115753   Curated Info

19

Santamaria A, et al. (2011) The Plk1-dependent phosphoproteome of the early mitotic spindle. Mol Cell Proteomics 10, M110.004457
20860994   Curated Info

20

Kettenbach AN, et al. (2011) Quantitative phosphoproteomics identifies substrates and functional modules of aurora and polo-like kinase activities in mitotic cells. Sci Signal 4, rs5
21712546   Curated Info

21

Dulla K, et al. (2010) Quantitative site-specific phosphorylation dynamics of human protein kinases during mitotic progression. Mol Cell Proteomics 9, 1167-81
20097925   Curated Info

22

Schreiber TB, et al. (2010) An integrated phosphoproteomics work flow reveals extensive network regulation in early lysophosphatidic acid signaling. Mol Cell Proteomics 9, 1047-62
20071362   Curated Info

23

Possemato A (2010) CST Curation Set: 9793; Year: 2010; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: pSP
Curated Info

24

Olsen JV, et al. (2010) Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal 3, ra3
20068231   Curated Info

25

Pan C, Olsen JV, Daub H, Mann M (2009) Global effects of kinase inhibitors on signaling networks revealed by quantitative phosphoproteomics. Mol Cell Proteomics 8, 2796-808
19651622   Curated Info

26

Gauci S, et al. (2009) Lys-N and trypsin cover complementary parts of the phosphoproteome in a refined SCX-based approach. Anal Chem 81, 4493-501
19413330   Curated Info

27

Possemato A (2009) CST Curation Set: 6370; Year: 2009; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: pSP
Curated Info

28

Mayya V, et al. (2009) Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions. Sci Signal 2, ra46
19690332   Curated Info

29

Daub H, et al. (2008) Kinase-selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle. Mol Cell 31, 438-48
18691976   Curated Info

30

Dephoure N, et al. (2008) A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci U S A 105, 10762-7
18669648   Curated Info

31

Stokes M (2008) CST Curation Set: 4391; Year: 2008; Biosample/Treatment: cell line, K562/untreated; Disease: chronic myelogenous leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[STY])
Curated Info

32

Ruse CI, et al. (2008) Motif-specific sampling of phosphoproteomes. J Proteome Res 7, 2140-50
18452278   Curated Info

33

Nousiainen M, et al. (2006) Phosphoproteome analysis of the human mitotic spindle. Proc Natl Acad Sci U S A 103, 5391-6
16565220   Curated Info