|
Powered by Cell Signaling Technology |
Site Information |
---|
GCRGVGGsAERLEES SwissProt Entrez-Gene |
Blast this site against: NCBI SwissProt PDB |
Site Group ID: 3202941 |
In vivo Characterization | |
---|---|
Methods used to characterize site in vivo: | |
Relevant cell line - cell type - tissue: |
Upstream Regulation | |
---|---|
Treatments: |
References | |
---|---|
Degryse S, et al. (2017) Mutant JAK3 phosphoproteomic profiling predicts synergism between JAK3 inhibitors and MEK/BCL2 inhibitors for the treatment of T-cell acute lymphoblastic leukemia. Leukemia 32
28852199 Curated Info |
|
Nagai T, et al. (2016) Phosphoproteomics of the Dopamine Pathway Enables Discovery of Rap1 Activation as a Reward Signal In Vivo. Neuron 89, 550-65
26804993 Curated Info |
|
Reinartz M, Raupach A, Kaisers W, Gödecke A (2014) AKT1 and AKT2 induce distinct phosphorylation patterns in HL-1 cardiac myocytes. J Proteome Res 13, 4232-45
25162660 Curated Info |
|
Mertins P, et al. (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol Cell Proteomics 13, 1690-704
24719451 Curated Info |
|
Hsu PP, et al. (2011) The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332, 1317-22
21659604 Curated Info |
|
Huttlin EL, et al. (2010) A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 143, 1174-89
21183079 Curated Info |