Ser257
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.5.9.3
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser257  -  SG2NA (mouse)

Site Information
FLENADDsDEEENDM   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 3195089

In vivo Characterization
Methods used to characterize site in vivo:
mass spectrometry ( 1 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 )
Disease tissue studied:
anthrax infection ( 11 ) , leukemia ( 8 ) , acute myelogenous leukemia ( 8 ) , melanoma skin cancer ( 23 )
Relevant cell line - cell type - tissue:
'3T3-L1, differentiated' (adipocyte) ( 5 ) , 'brain, embryonic' ( 18 , 21 ) , 'fat, brown' ( 12 ) , blood ( 8 ) , brain ( 9 , 12 , 14 , 19 , 20 ) , heart ( 6 , 16 , 17 ) , Hepa 1-6 (epithelial) ( 24 ) , liver ( 1 , 4 , 12 , 15 ) , macrophage-bone marrow ( 13 ) , macrophage-bone marrow [DUSP1 (mouse), homozygous knockout] ( 13 ) , MC3T3-E1 (preosteoblast) ( 3 ) , MEF (fibroblast) ( 7 , 10 ) , MEF (fibroblast) [Raptor (mouse), knockdown] ( 7 ) , MEF (fibroblast) [RICTOR (mouse), knockdown] ( 7 ) , MEF (fibroblast) [TSC2 (mouse), homozygous knockout] ( 10 ) , pancreas ( 12 ) , RAW 267.4 (macrophage) ( 22 ) , skin [mGluR1 (mouse), transgenic, TG mutant mice] ( 23 ) , spleen ( 11 ) , testis ( 12 )

Upstream Regulation
Treatments:
IFN-gamma ( 22 )

References 

1

Robles MS, Humphrey SJ, Mann M (2017) Phosphorylation Is a Central Mechanism for Circadian Control of Metabolism and Physiology. Cell Metab 25, 118-127
27818261   Curated Info

2

Sacco F, et al. (2016) Glucose-regulated and drug-perturbed phosphoproteome reveals molecular mechanisms controlling insulin secretion. Nat Commun 7, 13250
27841257   Curated Info

3

Williams GR, et al. (2016) Exploring G protein-coupled receptor signaling networks using SILAC-based phosphoproteomics. Methods 92, 36-50
26160508   Curated Info

4

Wilson-Grady JT, Haas W, Gygi SP (2013) Quantitative comparison of the fasted and re-fed mouse liver phosphoproteomes using lower pH reductive dimethylation. Methods 61, 277-86
23567750   Curated Info

5

Humphrey SJ, et al. (2013) Dynamic Adipocyte Phosphoproteome Reveals that Akt Directly Regulates mTORC2. Cell Metab 17, 1009-20
23684622   Curated Info

6

Lundby A, et al. (2013) In vivo phosphoproteomics analysis reveals the cardiac targets of β-adrenergic receptor signaling. Sci Signal 6, rs11
23737553   Curated Info

7

Robitaille AM, et al. (2013) Quantitative phosphoproteomics reveal mTORC1 activates de novo pyrimidine synthesis. Science 339, 1320-3
23429704   Curated Info

8

Trost M, et al. (2012) Posttranslational regulation of self-renewal capacity: insights from proteome and phosphoproteome analyses of stem cell leukemia. Blood 120, e17-27
22802335   Curated Info

9

Trinidad JC, et al. (2012) Global identification and characterization of both O-GlcNAcylation and phosphorylation at the murine synapse. Mol Cell Proteomics 11, 215-29
22645316   Curated Info

10

Yu Y, et al. (2011) Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science 332, 1322-6
21659605   Curated Info

11

Manes NP, et al. (2011) Discovery of mouse spleen signaling responses to anthrax using label-free quantitative phosphoproteomics via mass spectrometry. Mol Cell Proteomics 10, M110.000927
21189417   Curated Info

12

Huttlin EL, et al. (2010) A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 143, 1174-89
21183079   Curated Info

13

Weintz G, et al. (2010) The phosphoproteome of toll-like receptor-activated macrophages. Mol Syst Biol 6, 371
20531401   Curated Info

14

Wiśniewski JR, et al. (2010) Brain phosphoproteome obtained by a FASP-based method reveals plasma membrane protein topology. J Proteome Res 9, 3280-9
20415495   Curated Info

15

Zhou J (2009) CST Curation Set: 7388; Year: 2009; Biosample/Treatment: tissue, liver/untreated; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: QXp[ST]
Curated Info

16

Zhou J (2009) CST Curation Set: 7385; Year: 2009; Biosample/Treatment: tissue, heart/untreated; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: QXp[ST]
Curated Info

17

Zhou J (2009) CST Curation Set: 7386; Year: 2009; Biosample/Treatment: tissue, heart/untreated; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: QXp[ST]
Curated Info

18

Zhou J (2009) CST Curation Set: 7381; Year: 2009; Biosample/Treatment: tissue, brain/untreated; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: QXp[ST]
Curated Info

19

Zhou J (2009) CST Curation Set: 7383; Year: 2009; Biosample/Treatment: tissue, brain/untreated; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: QXp[ST]
Curated Info

20

Zhou J (2009) CST Curation Set: 7384; Year: 2009; Biosample/Treatment: tissue, brain/untreated; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: QXp[ST]
Curated Info

21

Zhou J (2009) CST Curation Set: 7382; Year: 2009; Biosample/Treatment: tissue, brain/untreated; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: QXp[ST]
Curated Info

22

Trost M, et al. (2009) The phagosomal proteome in interferon-gamma-activated macrophages. Immunity 30, 143-54
19144319   Curated Info

23

Zanivan S, et al. (2008) Solid tumor proteome and phosphoproteome analysis by high resolution mass spectrometry. J Proteome Res 7, 5314-26
19367708   Curated Info

24

Pan C, Gnad F, Olsen JV, Mann M (2008) Quantitative phosphoproteome analysis of a mouse liver cell line reveals specificity of phosphatase inhibitors. Proteomics 8, 4534-46
18846507   Curated Info