Ser303
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.5.8
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser303  -  SCFD1 (human)

Site Information
EssGVENsPAGARPK   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 3207654

In vivo Characterization
Methods used to characterize site in vivo:
mass spectrometry ( 1 , 2 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 )
Disease tissue studied:
breast cancer ( 4 , 8 , 9 , 20 ) , breast ductal carcinoma ( 8 ) , HER2 positive breast cancer ( 2 ) , luminal A breast cancer ( 2 ) , luminal B breast cancer ( 2 ) , breast cancer, surrounding tissue ( 2 ) , breast cancer, triple negative ( 2 , 8 ) , cervical cancer ( 45 ) , cervical adenocarcinoma ( 45 ) , gastric cancer ( 36 , 41 , 42 ) , gastric carcinoma ( 36 , 41 , 42 ) , leukemia ( 21 , 26 , 37 ) , acute myelogenous leukemia ( 21 , 26 ) , acute erythroid leukemias, including erythroleukemia (M6a) and very rare pure erythroid leukemia (M6b) ( 19 ) , acute megakaryoblastic leukemia (M7) ( 19 ) , acute monoblastic leukemia (M5a) or acute monocytic leukemia (M5b) ( 19 ) , acute myeloblastic leukemia, with granulocytic maturation (M2) ( 19 ) , acute myeloblastic leukemia, without maturation (M1) ( 19 ) , chronic myelogenous leukemia ( 37 ) , liver cancer ( 43 ) , liver cancer, surrounding tissue ( 44 ) , lung cancer ( 6 , 13 , 20 , 33 , 38 , 39 , 40 , 47 ) , non-small cell lung cancer ( 20 , 38 , 39 , 40 ) , non-small cell lung adenocarcinoma ( 6 , 13 ) , B cell lymphoma ( 19 ) , non-Hodgkin's lymphoma ( 19 ) , neuroblastoma ( 18 ) , ovarian cancer ( 8 ) , pancreatic ductal adenocarcinoma ( 12 ) , multiple myeloma ( 19 ) , melanoma skin cancer ( 5 )
Relevant cell line - cell type - tissue:
'pancreatic, ductal'-pancreas ( 12 ) , 'stem, embryonic' ( 49 ) , 293 (epithelial) ( 50 ) , 293E (epithelial) ( 27 ) , A549 (pulmonary) ( 14 ) , AML-193 (monocyte) ( 19 ) , breast ( 2 , 8 ) , BT-20 (breast cell) ( 20 ) , BT-474 (breast cell) ( 4 ) , BT-549 (breast cell) ( 20 ) , Calu 6 (pulmonary) ( 20 ) , CL1-0 (pulmonary) ( 33 ) , CL1-1 (pulmonary) ( 33 ) , CL1-2 (pulmonary) ( 33 ) , CL1-5 (pulmonary) ( 33 ) , CMK (megakaryoblast) ( 19 ) , CTS (myeloid) ( 19 ) , DOHH2 ('B lymphocyte, precursor') ( 19 ) , endothelial-aorta ( 22 ) , Flp-In T-Rex-293 (epithelial) [PRKD1 (human), genetic knockin] ( 23 ) , Flp-In T-Rex-293 (epithelial) ( 23 ) , H2009 (pulmonary) ( 20 ) , H2077 (pulmonary) ( 20 ) , H2887 (pulmonary) ( 20 ) , H322M (pulmonary) ( 20 ) , HCC1359 (pulmonary) ( 20 ) , HCC1937 (breast cell) ( 20 ) , HCC366 (pulmonary) ( 20 ) , HCC4006 (pulmonary) ( 20 ) , HCC78 (pulmonary) ( 20 ) , HCT116 (intestinal) ( 51 ) , HEL (erythroid) ( 19 ) , HeLa (cervical) ( 1 , 7 , 17 , 32 , 46 , 53 ) , HeLa S3 (cervical) ( 45 , 52 ) , HMLER ('stem, breast cancer') [CXCR4 (human), knockdown] ( 9 ) , HMLER ('stem, breast cancer') ( 9 ) , HOP62 (pulmonary) ( 20 ) , HUES-7 ('stem, embryonic') ( 48 ) , HUES-9 ('stem, embryonic') ( 31 ) , Jurkat (T lymphocyte) ( 15 , 28 , 29 , 30 ) , K562 (erythroid) ( 17 , 37 , 46 ) , Kasumi-1 (myeloid) ( 19 ) , KG-1 (myeloid) ( 19 , 26 ) , liver ( 11 , 43 , 44 ) , lung ( 13 , 38 , 39 , 40 , 47 ) , MCF-7 (breast cell) ( 4 , 20 ) , MDA-MB-231 (breast cell) ( 20 ) , MDA-MB-468 (breast cell) ( 20 ) , MKN-45 (gastric) ( 36 , 41 , 42 ) , MV4-11 (macrophage) ( 19 , 21 ) , NB10 (neural crest) ( 18 ) , NCI-H1395 (pulmonary) ( 20 ) , NCI-H1568 (pulmonary) ( 20 ) , NCI-H157 (pulmonary) ( 20 ) , NCI-H1648 (pulmonary) ( 20 ) , NCI-H1666 (pulmonary) ( 20 ) , NCI-H2030 (pulmonary) ( 20 ) , NCI-H322 (pulmonary) ( 20 ) , NCI-H460 (pulmonary) ( 51 ) , NCI-H520 (squamous) ( 20 ) , NCI-H647 (pulmonary) ( 20 ) , NPC (neural crest) ( 18 ) , OPM-2 (plasma cell) ( 19 ) , ovary ( 8 ) , P31/FUJ (erythroid) ( 19 , 21 ) , PC9 (pulmonary) ( 6 , 20 ) , RL ('B lymphocyte, precursor') ( 19 ) , RPMI-8266 (plasma cell) ( 19 ) , SH-SY5Y (neural crest) [LRRK2 (human), transfection, over-expression of LRRK2(G2019S)] ( 10 ) , SU-DHL-6 (B lymphocyte) ( 19 ) , U266 (plasma cell) ( 19 ) , WM239A (melanocyte) ( 5 )

Upstream Regulation
Treatments:
nocodazole ( 45 )

References 

1

Huang H, et al. (2016) Simultaneous Enrichment of Cysteine-containing Peptides and Phosphopeptides Using a Cysteine-specific Phosphonate Adaptable Tag (CysPAT) in Combination with titanium dioxide (TiO2) Chromatography. Mol Cell Proteomics 15, 3282-3296
27281782   Curated Info

2

Mertins P, et al. (2016) Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534, 55-62
27251275   Curated Info

3

Boeing S, et al. (2016) Multiomic Analysis of the UV-Induced DNA Damage Response. Cell Rep 15, 1597-1610
27184836   Curated Info

4

Carrier M, et al. (2016) Phosphoproteome and Transcriptome of RA-Responsive and RA-Resistant Breast Cancer Cell Lines. PLoS One 11, e0157290
27362937   Curated Info

5

Stuart SA, et al. (2015) A Phosphoproteomic Comparison of B-RAFV600E and MKK1/2 Inhibitors in Melanoma Cells. Mol Cell Proteomics 14, 1599-615
25850435   Curated Info

6

Tsai CF, et al. (2015) Large-scale determination of absolute phosphorylation stoichiometries in human cells by motif-targeting quantitative proteomics. Nat Commun 6, 6622
25814448   Curated Info

7

Sharma K, et al. (2014) Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep 8, 1583-94
25159151   Curated Info

8

Mertins P, et al. (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol Cell Proteomics 13, 1690-704
24719451   Curated Info

9

Yi T, et al. (2014) Quantitative phosphoproteomic analysis reveals system-wide signaling pathways downstream of SDF-1/CXCR4 in breast cancer stem cells. Proc Natl Acad Sci U S A 111, E2182-90
24782546   Curated Info

10

Luerman GC, et al. (2014) Phosphoproteomic evaluation of pharmacological inhibition of leucine-rich repeat kinase 2 reveals significant off-target effects of LRRK-2-IN-1. J Neurochem 128, 561-76
24117733   Curated Info

11

Bian Y, et al. (2014) An enzyme assisted RP-RPLC approach for in-depth analysis of human liver phosphoproteome. J Proteomics 96, 253-62
24275569   Curated Info

12

Britton D, et al. (2014) Quantification of pancreatic cancer proteome and phosphorylome: indicates molecular events likely contributing to cancer and activity of drug targets. PLoS One 9, e90948
24670416   Curated Info

13

Schweppe DK, Rigas JR, Gerber SA (2013) Quantitative phosphoproteomic profiling of human non-small cell lung cancer tumors. J Proteomics 91, 286-96
23911959   Curated Info

14

Kim JY, et al. (2013) Dissection of TBK1 signaling via phosphoproteomics in lung cancer cells. Proc Natl Acad Sci U S A 110, 12414-9
23836654   Curated Info

15

Mertins P, et al. (2013) Integrated proteomic analysis of post-translational modifications by serial enrichment. Nat Methods 10, 634-7
23749302   Curated Info

16

Shiromizu T, et al. (2013) Identification of missing proteins in the neXtProt database and unregistered phosphopeptides in the PhosphoSitePlus database as part of the Chromosome-centric Human Proteome Project. J Proteome Res 12, 2414-21
23312004   Curated Info

17

Zhou H, et al. (2013) Toward a comprehensive characterization of a human cancer cell phosphoproteome. J Proteome Res 12, 260-71
23186163   Curated Info

18

DeNardo BD, et al. (2013) Quantitative phosphoproteomic analysis identifies activation of the RET and IGF-1R/IR signaling pathways in neuroblastoma. PLoS One 8, e82513
24349301   Curated Info

19

Casado P, et al. (2013) Phosphoproteomics data classify hematological cancer cell lines according to tumor type and sensitivity to kinase inhibitors. Genome Biol 14, R37
23628362   Curated Info

20

Klammer M, et al. (2012) Phosphosignature predicts dasatinib response in non-small cell lung cancer. Mol Cell Proteomics 11, 651-68
22617229   Curated Info

21

Alcolea MP, et al. (2012) Phosphoproteomic analysis of leukemia cells under basal and drug-treated conditions identifies markers of kinase pathway activation and mechanisms of resistance. Mol Cell Proteomics 11, 453-66
22547687   Curated Info

22

Verano-Braga T, et al. (2012) Time-resolved quantitative phosphoproteomics: new insights into Angiotensin-(1-7) signaling networks in human endothelial cells. J Proteome Res 11, 3370-81
22497526   Curated Info

23

Franz-Wachtel M, et al. (2012) Global detection of protein kinase D-dependent phosphorylation events in nocodazole-treated human cells. Mol Cell Proteomics 11, 160-70
22496350   Curated Info

24

Rikova K (2012) CST Curation Set: 13915; Year: 2012; Biosample/Treatment: cell line, Mix of TMT treated cell lines 1/treated; Disease: -; SILAC: -;
Curated Info

25

Rikova K (2012) CST Curation Set: 13916; Year: 2012; Biosample/Treatment: cell line, Mix of TMT treated cell lines 2/treated; Disease: -; SILAC: -;
Curated Info

26

Weber C, Schreiber TB, Daub H (2012) Dual phosphoproteomics and chemical proteomics analysis of erlotinib and gefitinib interference in acute myeloid leukemia cells. J Proteomics 75, 1343-56
22115753   Curated Info

27

Hsu PP, et al. (2011) The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332, 1317-22
21659604   Curated Info

28

Guo A (2011) CST Curation Set: 11886; Year: 2011; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[ST]P
Curated Info

29

Guo A (2011) CST Curation Set: 11887; Year: 2011; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[ST]P
Curated Info

30

Guo A (2011) CST Curation Set: 11888; Year: 2011; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[ST]P
Curated Info

31

Rigbolt KT, et al. (2011) System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation. Sci Signal 4, rs3
21406692   Curated Info

32

Kettenbach AN, et al. (2011) Quantitative phosphoproteomics identifies substrates and functional modules of aurora and polo-like kinase activities in mitotic cells. Sci Signal 4, rs5
21712546   Curated Info

33

Wang YT, et al. (2010) An informatics-assisted label-free quantitation strategy that depicts phosphoproteomic profiles in lung cancer cell invasion. J Proteome Res 9, 5582-97
20815410   Curated Info

34

Rikova K (2010) CST Curation Set: 10041; Year: 2010; Biosample/Treatment: cell line, DFCI ERC17/untreated; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[STY])
Curated Info

35

Rikova K (2010) CST Curation Set: 10039; Year: 2010; Biosample/Treatment: cell line, DFCI ERC11 triple/untreated; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[STY])
Curated Info

36

Rikova K (2010) CST Curation Set: 9329; Year: 2010; Biosample/Treatment: cell line, MKN-45/untreated; Disease: gastric carcinoma; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[STY])
Curated Info

37

Rikova K (2010) CST Curation Set: 9327; Year: 2010; Biosample/Treatment: cell line, K562/untreated; Disease: chronic myelogenous leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[STY])
Curated Info

38

Rikova K (2010) CST Curation Set: 9222; Year: 2010; Biosample/Treatment: tissue, lung/untreated; Disease: non-small cell lung cancer; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[STY])
Curated Info

39

Rikova K (2010) CST Curation Set: 9217; Year: 2010; Biosample/Treatment: tissue, lung/untreated; Disease: non-small cell lung cancer; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[STY])
Curated Info

40

Rikova K (2010) CST Curation Set: 9211; Year: 2010; Biosample/Treatment: tissue, lung/untreated; Disease: non-small cell lung cancer; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[STY])
Curated Info

41

Possemato A (2010) CST Curation Set: 9178; Year: 2010; Biosample/Treatment: cell line, MKN-45/untreated; Disease: gastric carcinoma; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[STY]
Curated Info

42

Possemato A (2010) CST Curation Set: 9179; Year: 2010; Biosample/Treatment: cell line, MKN-45/untreated; Disease: gastric carcinoma; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[STY]
Curated Info

43

Tucker M (2010) CST Curation Set: 8912; Year: 2010; Biosample/Treatment: tissue, liver/untreated; Disease: liver cancer; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[ST]P
Curated Info

44

Tucker M (2010) CST Curation Set: 8915; Year: 2010; Biosample/Treatment: tissue, liver/untreated; Disease: liver cancer; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[ST]P
Curated Info

45

Olsen JV, et al. (2010) Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal 3, ra3
20068231   Curated Info

46

Pan C, Olsen JV, Daub H, Mann M (2009) Global effects of kinase inhibitors on signaling networks revealed by quantitative phosphoproteomics. Mol Cell Proteomics 8, 2796-808
19651622   Curated Info

47

Rikova K (2009) CST Curation Set: 8509; Year: 2009; Biosample/Treatment: tissue, lung/untreated; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[ST]P
Curated Info

48

Van Hoof D, et al. (2009) Phosphorylation dynamics during early differentiation of human embryonic stem cells. Cell Stem Cell 5, 214-26
19664995   Curated Info

49

Brill LM, et al. (2009) Phosphoproteomic analysis of human embryonic stem cells. Cell Stem Cell 5, 204-13
19664994   Curated Info

50

Gauci S, et al. (2009) Lys-N and trypsin cover complementary parts of the phosphoproteome in a refined SCX-based approach. Anal Chem 81, 4493-501
19413330   Curated Info

51

Nagano K, et al. (2009) Phosphoproteomic analysis of distinct tumor cell lines in response to nocodazole treatment. Proteomics 9, 2861-74
19415658   Curated Info

52

Daub H, et al. (2008) Kinase-selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle. Mol Cell 31, 438-48
18691976   Curated Info

53

Dephoure N, et al. (2008) A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci U S A 105, 10762-7
18669648   Curated Info