Ser670
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.5.9
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser670  -  BUB1B (human)

Site Information
TLsIkkLsPIIEDsR   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 3207630

In vivo Characterization
Methods used to characterize site in vivo:
immunoprecipitation ( 8 , 33 ) , mass spectrometry ( 1 , 3 , 5 , 6 , 7 , 9 , 10 , 13 , 14 , 16 , 17 , 18 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 ) , mutation of modification site ( 8 , 15 , 28 , 33 ) , phospho-antibody ( 4 , 15 , 28 , 33 ) , western blotting ( 4 , 8 , 15 , 28 )
Disease tissue studied:
bone cancer ( 4 ) , breast cancer ( 6 , 7 ) , breast ductal carcinoma ( 6 ) , HER2 positive breast cancer ( 1 ) , luminal A breast cancer ( 1 ) , luminal B breast cancer ( 1 ) , breast cancer, surrounding tissue ( 1 ) , breast cancer, triple negative ( 1 , 6 ) , cervical cancer ( 28 , 29 ) , cervical adenocarcinoma ( 28 , 29 ) , leukemia ( 17 , 20 ) , acute myelogenous leukemia ( 17 , 20 ) , acute erythroid leukemias, including erythroleukemia (M6a) and very rare pure erythroid leukemia (M6b) ( 14 , 17 ) , acute megakaryoblastic leukemia (M7) ( 14 ) , acute monoblastic leukemia (M5a) or acute monocytic leukemia (M5b) ( 14 ) , acute myeloblastic leukemia, with granulocytic maturation (M2) ( 14 ) , acute myeloblastic leukemia, without maturation (M1) ( 14 ) , lung cancer ( 9 , 16 , 26 ) , non-small cell lung cancer ( 16 ) , non-small cell lung adenocarcinoma ( 9 ) , B cell lymphoma ( 14 ) , non-Hodgkin's lymphoma ( 14 ) , multiple myeloma ( 14 ) , melanoma skin cancer ( 3 )
Relevant cell line - cell type - tissue:

Upstream Regulation
Putative in vivo kinases:
TTK (human) ( 33 )
Kinases, in vitro:
CDK1 (human) ( 28 )
Treatments:
AZ3146 ( 8 ) , BI2536 ( 8 ) , hesperadin ( 33 ) , MG132_withdrawal ( 27 ) , MLN8054 ( 24 ) , nocodazole ( 28 , 29 , 33 , 34 ) , seliciclib ( 33 ) , SP600125 ( 8 ) , staurosporine ( 33 ) , taxol ( 28 ) , thymidine ( 34 ) , ZM447439 ( 8 )

Downstream Regulation
Effects of modification on BUB1B:
molecular association, regulation ( 15 )
Effects of modification on biological processes:
cell cycle regulation ( 12 , 15 , 33 ) , cytoskeletal reorganization ( 28 )
Induce interaction with:
PPP2CA (human) ( 12 ) , PPP2R5A (human) ( 15 )

References 

1

Mertins P, et al. (2016) Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534, 55-62
27251275   Curated Info

2

Boeing S, et al. (2016) Multiomic Analysis of the UV-Induced DNA Damage Response. Cell Rep 15, 1597-1610
27184836   Curated Info

3

Stuart SA, et al. (2015) A Phosphoproteomic Comparison of B-RAFV600E and MKK1/2 Inhibitors in Melanoma Cells. Mol Cell Proteomics 14, 1599-615
25850435   Curated Info

4

Nijenhuis W, et al. (2014) Negative feedback at kinetochores underlies a responsive spindle checkpoint signal. Nat Cell Biol 16, 1257-64
25402682   Curated Info

5

Sharma K, et al. (2014) Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep 8, 1583-94
25159151   Curated Info

6

Mertins P, et al. (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol Cell Proteomics 13, 1690-704
24719451   Curated Info

7

Yi T, et al. (2014) Quantitative phosphoproteomic analysis reveals system-wide signaling pathways downstream of SDF-1/CXCR4 in breast cancer stem cells. Proc Natl Acad Sci U S A 111, E2182-90
24782546   Curated Info

8

Tipton AR, et al. (2013) Monopolar Spindle 1 (MPS1) Kinase Promotes Production of Closed MAD2 (C-MAD2) Conformer and Assembly of the Mitotic Checkpoint Complex. J Biol Chem 288, 35149-58
24151075   Curated Info

9

Schweppe DK, Rigas JR, Gerber SA (2013) Quantitative phosphoproteomic profiling of human non-small cell lung cancer tumors. J Proteomics 91, 286-96
23911959   Curated Info

10

Mertins P, et al. (2013) Integrated proteomic analysis of post-translational modifications by serial enrichment. Nat Methods 10, 634-7
23749302   Curated Info

11

Shiromizu T, et al. (2013) Identification of missing proteins in the neXtProt database and unregistered phosphopeptides in the PhosphoSitePlus database as part of the Chromosome-centric Human Proteome Project. J Proteome Res 12, 2414-21
23312004   Curated Info

12

Kruse T, et al. (2013) Direct binding between BubR1 and B56-PP2A phosphatase complexes regulate mitotic progression. J Cell Sci 126, 1086-92
23345399   Curated Info

13

Zhou H, et al. (2013) Toward a comprehensive characterization of a human cancer cell phosphoproteome. J Proteome Res 12, 260-71
23186163   Curated Info

14

Casado P, et al. (2013) Phosphoproteomics data classify hematological cancer cell lines according to tumor type and sensitivity to kinase inhibitors. Genome Biol 14, R37
23628362   Curated Info

15

Suijkerbuijk SJ, Vleugel M, Teixeira A, Kops GJ (2012) Integration of Kinase and Phosphatase Activities by BUBR1 Ensures Formation of Stable Kinetochore-Microtubule Attachments. Dev Cell 23, 745-55
23079597   Curated Info

16

Klammer M, et al. (2012) Phosphosignature predicts dasatinib response in non-small cell lung cancer. Mol Cell Proteomics 11, 651-68
22617229   Curated Info

17

Alcolea MP, et al. (2012) Phosphoproteomic analysis of leukemia cells under basal and drug-treated conditions identifies markers of kinase pathway activation and mechanisms of resistance. Mol Cell Proteomics 11, 453-66
22547687   Curated Info

18

Franz-Wachtel M, et al. (2012) Global detection of protein kinase D-dependent phosphorylation events in nocodazole-treated human cells. Mol Cell Proteomics 11, 160-70
22496350   Curated Info

19

Beli P, et al. (2012) Proteomic Investigations Reveal a Role for RNA Processing Factor THRAP3 in the DNA Damage Response. Mol Cell 46, 212-25
22424773   Curated Info

20

Weber C, Schreiber TB, Daub H (2012) Dual phosphoproteomics and chemical proteomics analysis of erlotinib and gefitinib interference in acute myeloid leukemia cells. J Proteomics 75, 1343-56
22115753   Curated Info

21

Grosstessner-Hain K, et al. (2011) Quantitative phospho-proteomics to investigate the polo-like kinase 1-dependent phospho-proteome. Mol Cell Proteomics 10, M111.008540
21857030   Curated Info

22

Santamaria A, et al. (2011) The Plk1-dependent phosphoproteome of the early mitotic spindle. Mol Cell Proteomics 10, M110.004457
20860994   Curated Info

23

Rigbolt KT, et al. (2011) System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation. Sci Signal 4, rs3
21406692   Curated Info

24

Kettenbach AN, et al. (2011) Quantitative phosphoproteomics identifies substrates and functional modules of aurora and polo-like kinase activities in mitotic cells. Sci Signal 4, rs5
21712546   Curated Info

25

Hegemann B, et al. (2011) Systematic phosphorylation analysis of human mitotic protein complexes. Sci Signal 4, rs12
22067460   Curated Info

26

Wang YT, et al. (2010) An informatics-assisted label-free quantitation strategy that depicts phosphoproteomic profiles in lung cancer cell invasion. J Proteome Res 9, 5582-97
20815410   Curated Info

27

Dulla K, et al. (2010) Quantitative site-specific phosphorylation dynamics of human protein kinases during mitotic progression. Mol Cell Proteomics 9, 1167-81
20097925   Curated Info

28

Elowe S, et al. (2010) Uncoupling of the spindle-checkpoint and chromosome-congression functions of BubR1. J Cell Sci 123, 84-94
20016069   Curated Info

29

Olsen JV, et al. (2010) Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal 3, ra3
20068231   Curated Info

30

Pan C, Olsen JV, Daub H, Mann M (2009) Global effects of kinase inhibitors on signaling networks revealed by quantitative phosphoproteomics. Mol Cell Proteomics 8, 2796-808
19651622   Curated Info

31

Malik R, et al. (2009) Quantitative analysis of the human spindle phosphoproteome at distinct mitotic stages. J Proteome Res 8, 4553-63
19691289   Curated Info

32

Chen RQ, et al. (2009) CDC25B mediates rapamycin-induced oncogenic responses in cancer cells. Cancer Res 69, 2663-8
19276368   Curated Info

33

Huang H, et al. (2008) Phosphorylation sites in BubR1 that regulate kinetochore attachment, tension, and mitotic exit. J Cell Biol 183, 667-80
19015317   Curated Info

34

Daub H, et al. (2008) Kinase-selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle. Mol Cell 31, 438-48
18691976   Curated Info

35

Dephoure N, et al. (2008) A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci U S A 105, 10762-7
18669648   Curated Info

36

Steen JA, et al. (2008) Different phosphorylation states of the anaphase promoting complex in response to antimitotic drugs: a quantitative proteomic analysis. Proc Natl Acad Sci U S A 105, 6069-74
18420821   Curated Info