Ser453
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.5.9.3
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser453  -  IRF2BP1 (human)

Site Information
PVRAGGAsPAAsSTA   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 3197996

In vivo Characterization
Methods used to characterize site in vivo:
mass spectrometry ( 1 , 2 , 3 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 18 , 19 , 20 , 21 , 22 , 23 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 )
Disease tissue studied:
breast cancer ( 5 , 8 , 9 , 21 ) , breast ductal carcinoma ( 8 ) , HER2 positive breast cancer ( 3 ) , luminal A breast cancer ( 3 ) , luminal B breast cancer ( 3 ) , breast cancer, surrounding tissue ( 3 ) , breast cancer, triple negative ( 3 , 8 ) , cervical cancer ( 37 ) , cervical adenocarcinoma ( 37 ) , leukemia ( 25 ) , acute myelogenous leukemia ( 25 ) , acute erythroid leukemias, including erythroleukemia (M6a) and very rare pure erythroid leukemia (M6b) ( 20 ) , acute megakaryoblastic leukemia (M7) ( 20 ) , acute monoblastic leukemia (M5a) or acute monocytic leukemia (M5b) ( 20 ) , acute myeloblastic leukemia, with granulocytic maturation (M2) ( 20 ) , acute myeloblastic leukemia, without maturation (M1) ( 20 ) , lung cancer ( 14 , 21 , 27 ) , non-small cell lung cancer ( 21 ) , non-small cell lung adenocarcinoma ( 14 , 27 ) , lymphoma ( 10 ) , B cell lymphoma ( 20 ) , non-Hodgkin's lymphoma ( 20 ) , follicular lymphoma ( 10 ) , mantle cell lymphoma ( 10 ) , neuroblastoma ( 19 ) , ovarian cancer ( 8 ) , pancreatic ductal adenocarcinoma ( 13 ) , multiple myeloma ( 20 ) , melanoma skin cancer ( 6 )
Relevant cell line - cell type - tissue:
'pancreatic, ductal'-pancreas ( 13 ) , 293 (epithelial) [AT1 (human), transfection, AT1R stable transfected HEK293] ( 36 ) , 293 (epithelial) [AT1 (human), transfection] ( 34 ) , 293E (epithelial) ( 26 ) , 293GP (epithelial) [NPM-ALK (human), transfection] ( 35 ) , A549 (pulmonary) ( 15 ) , AML-193 (monocyte) ( 20 ) , breast ( 3 , 8 ) , BT-20 (breast cell) ( 21 ) , BT-474 (breast cell) ( 5 ) , BT-549 (breast cell) ( 21 ) , CMK (megakaryoblast) ( 20 ) , CTS (myeloid) ( 20 ) , DOHH2 ('B lymphocyte, precursor') ( 20 ) , endothelial-aorta ( 22 ) , Flp-In T-Rex-293 (epithelial) [PRKD1 (human), genetic knockin] ( 23 ) , Flp-In T-Rex-293 (epithelial) ( 23 ) , H2009 (pulmonary) ( 21 ) , H2077 (pulmonary) ( 21 ) , H2887 (pulmonary) ( 21 ) , H322M (pulmonary) ( 21 ) , HCC1937 (breast cell) ( 21 ) , HCC2279 (pulmonary) ( 21 ) , HCC366 (pulmonary) ( 21 ) , HCC78 (pulmonary) ( 21 ) , HEL (erythroid) ( 20 ) , HeLa (cervical) ( 2 , 7 , 18 , 30 , 38 , 42 , 43 , 44 , 45 ) , HeLa S3 (cervical) ( 28 , 37 ) , HMLER ('stem, breast cancer') [CXCR4 (human), knockdown] ( 9 ) , HMLER ('stem, breast cancer') ( 9 ) , HOP62 (pulmonary) ( 21 ) , HUES-7 ('stem, embryonic') ( 39 ) , HUES-9 ('stem, embryonic') ( 29 ) , Jurkat (T lymphocyte) ( 16 , 31 , 32 , 33 , 40 , 41 ) , K562 (erythroid) ( 18 , 38 ) , Kasumi-1 (myeloid) ( 20 ) , KG-1 (myeloid) ( 20 , 25 ) , liver ( 12 ) , lung ( 14 ) , MCF-7 (breast cell) ( 21 ) , MDA-MB-231 (breast cell) ( 21 ) , MDA-MB-468 (breast cell) ( 21 ) , MV4-11 (macrophage) ( 20 ) , NB10 (neural crest) ( 19 ) , NCEB-1 (B lymphocyte) ( 10 ) , NCI-H1395 (pulmonary) ( 21 ) , NCI-H1568 (pulmonary) ( 21 ) , NCI-H157 (pulmonary) ( 21 ) , NCI-H1666 (pulmonary) ( 21 ) , NCI-H2030 (pulmonary) ( 21 ) , NCI-H2172 (pulmonary) ( 21 ) , NCI-H322 (pulmonary) ( 21 ) , NCI-H520 (squamous) ( 21 ) , NCI-H647 (pulmonary) ( 21 ) , NPC (neural crest) ( 19 ) , OCI-ly1 (B lymphocyte) ( 10 ) , OPM-2 (plasma cell) ( 20 ) , ovary ( 8 ) , P31/FUJ (erythroid) ( 20 ) , PC9 (pulmonary) ( 21 ) , REC-1 (B lymphocyte) ( 10 ) , RL ('B lymphocyte, precursor') ( 20 ) , RPMI-8266 (plasma cell) ( 20 ) , SH-SY5Y (neural crest) [LRRK2 (human), transfection, over-expression of LRRK2(G2019S)] ( 11 ) , SH-SY5Y (neural crest) ( 11 ) , SU-DHL-6 (B lymphocyte) ( 20 ) , U-1810 (pulmonary) [EFNB3 (human), knockdown] ( 27 ) , U-1810 (pulmonary) ( 27 ) , U266 (plasma cell) ( 20 ) , Vero E6-S ('epithelial, kidney') ( 1 ) , WM239A (melanocyte) ( 6 )

Upstream Regulation
Treatments:
LRRK2-IN-1 ( 11 )

References 

1

Bouhaddou M, et al. (2020) The Global Phosphorylation Landscape of SARS-CoV-2 Infection. Cell
32645325   Curated Info

2

Huang H, et al. (2016) Simultaneous Enrichment of Cysteine-containing Peptides and Phosphopeptides Using a Cysteine-specific Phosphonate Adaptable Tag (CysPAT) in Combination with titanium dioxide (TiO2) Chromatography. Mol Cell Proteomics 15, 3282-3296
27281782   Curated Info

3

Mertins P, et al. (2016) Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534, 55-62
27251275   Curated Info

4

Boeing S, et al. (2016) Multiomic Analysis of the UV-Induced DNA Damage Response. Cell Rep 15, 1597-1610
27184836   Curated Info

5

Carrier M, et al. (2016) Phosphoproteome and Transcriptome of RA-Responsive and RA-Resistant Breast Cancer Cell Lines. PLoS One 11, e0157290
27362937   Curated Info

6

Stuart SA, et al. (2015) A Phosphoproteomic Comparison of B-RAFV600E and MKK1/2 Inhibitors in Melanoma Cells. Mol Cell Proteomics 14, 1599-615
25850435   Curated Info

7

Sharma K, et al. (2014) Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep 8, 1583-94
25159151   Curated Info

8

Mertins P, et al. (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol Cell Proteomics 13, 1690-704
24719451   Curated Info

9

Yi T, et al. (2014) Quantitative phosphoproteomic analysis reveals system-wide signaling pathways downstream of SDF-1/CXCR4 in breast cancer stem cells. Proc Natl Acad Sci U S A 111, E2182-90
24782546   Curated Info

10

Rolland D, et al. (2014) Global phosphoproteomic profiling reveals distinct signatures in B-cell non-Hodgkin lymphomas. Am J Pathol 184, 1331-42
24667141   Curated Info

11

Luerman GC, et al. (2014) Phosphoproteomic evaluation of pharmacological inhibition of leucine-rich repeat kinase 2 reveals significant off-target effects of LRRK-2-IN-1. J Neurochem 128, 561-76
24117733   Curated Info

12

Bian Y, et al. (2014) An enzyme assisted RP-RPLC approach for in-depth analysis of human liver phosphoproteome. J Proteomics 96, 253-62
24275569   Curated Info

13

Britton D, et al. (2014) Quantification of pancreatic cancer proteome and phosphorylome: indicates molecular events likely contributing to cancer and activity of drug targets. PLoS One 9, e90948
24670416   Curated Info

14

Schweppe DK, Rigas JR, Gerber SA (2013) Quantitative phosphoproteomic profiling of human non-small cell lung cancer tumors. J Proteomics 91, 286-96
23911959   Curated Info

15

Kim JY, et al. (2013) Dissection of TBK1 signaling via phosphoproteomics in lung cancer cells. Proc Natl Acad Sci U S A 110, 12414-9
23836654   Curated Info

16

Mertins P, et al. (2013) Integrated proteomic analysis of post-translational modifications by serial enrichment. Nat Methods 10, 634-7
23749302   Curated Info

17

Shiromizu T, et al. (2013) Identification of missing proteins in the neXtProt database and unregistered phosphopeptides in the PhosphoSitePlus database as part of the Chromosome-centric Human Proteome Project. J Proteome Res 12, 2414-21
23312004   Curated Info

18

Zhou H, et al. (2013) Toward a comprehensive characterization of a human cancer cell phosphoproteome. J Proteome Res 12, 260-71
23186163   Curated Info

19

DeNardo BD, et al. (2013) Quantitative phosphoproteomic analysis identifies activation of the RET and IGF-1R/IR signaling pathways in neuroblastoma. PLoS One 8, e82513
24349301   Curated Info

20

Casado P, et al. (2013) Phosphoproteomics data classify hematological cancer cell lines according to tumor type and sensitivity to kinase inhibitors. Genome Biol 14, R37
23628362   Curated Info

21

Klammer M, et al. (2012) Phosphosignature predicts dasatinib response in non-small cell lung cancer. Mol Cell Proteomics 11, 651-68
22617229   Curated Info

22

Verano-Braga T, et al. (2012) Time-resolved quantitative phosphoproteomics: new insights into Angiotensin-(1-7) signaling networks in human endothelial cells. J Proteome Res 11, 3370-81
22497526   Curated Info

23

Franz-Wachtel M, et al. (2012) Global detection of protein kinase D-dependent phosphorylation events in nocodazole-treated human cells. Mol Cell Proteomics 11, 160-70
22496350   Curated Info

24

Beli P, et al. (2012) Proteomic Investigations Reveal a Role for RNA Processing Factor THRAP3 in the DNA Damage Response. Mol Cell 46, 212-25
22424773   Curated Info

25

Weber C, Schreiber TB, Daub H (2012) Dual phosphoproteomics and chemical proteomics analysis of erlotinib and gefitinib interference in acute myeloid leukemia cells. J Proteomics 75, 1343-56
22115753   Curated Info

26

Hsu PP, et al. (2011) The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332, 1317-22
21659604   Curated Info

27

Ståhl S, et al. (2011) Phosphoproteomic profiling of NSCLC cells reveals that ephrin B3 regulates pro-survival signaling through Akt1-mediated phosphorylation of the EphA2 receptor. J Proteome Res 10, 2566-78
21413766   Curated Info

28

Santamaria A, et al. (2011) The Plk1-dependent phosphoproteome of the early mitotic spindle. Mol Cell Proteomics 10, M110.004457
20860994   Curated Info

29

Rigbolt KT, et al. (2011) System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation. Sci Signal 4, rs3
21406692   Curated Info

30

Kettenbach AN, et al. (2011) Quantitative phosphoproteomics identifies substrates and functional modules of aurora and polo-like kinase activities in mitotic cells. Sci Signal 4, rs5
21712546   Curated Info

31

Possemato A (2010) CST Curation Set: 10960; Year: 2010; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: RXXp[ST] Antibodies Used to Purify Peptides prior to LCMS: Phospho-Akt Substrate (RXRXXS/T) (110B7) Rabbit mAb Cat#: 9614, PTMScan(R) Phospho-Akt Substrate Motif (RXXS*/T*) Immunoaffinity Beads Cat#: 1978
Curated Info

32

Possemato A (2010) CST Curation Set: 10715; Year: 2010; Biosample/Treatment: cell line, Jurkat/pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: RXXp[ST] Antibodies Used to Purify Peptides prior to LCMS: Phospho-Akt Substrate (RXRXXS/T) (110B7) Rabbit mAb Cat#: 9614, PTMScan(R) Phospho-Akt Substrate Motif (RXXS*/T*) Immunoaffinity Beads Cat#: 1978
Curated Info

33

Possemato A (2010) CST Curation Set: 10530; Year: 2010; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: RXXp[ST] Antibodies Used to Purify Peptides prior to LCMS: Phospho-Akt Substrate (RXRXXS/T) (110B7) Rabbit mAb Cat#: 9614, PTMScan(R) Phospho-Akt Substrate Motif (RXXS*/T*) Immunoaffinity Beads Cat#: 1978
Curated Info

34

Xiao K, et al. (2010) Global phosphorylation analysis of beta-arrestin-mediated signaling downstream of a seven transmembrane receptor (7TMR). Proc Natl Acad Sci U S A 107, 15299-304
20686112   Curated Info

35

Wu F, et al. (2010) Studies of phosphoproteomic changes induced by nucleophosmin-anaplastic lymphoma kinase (ALK) highlight deregulation of tumor necrosis factor (TNF)/Fas/TNF-related apoptosis-induced ligand signaling pathway in ALK-positive anaplastic large cell lymphoma. Mol Cell Proteomics 9, 1616-32
20393185   Curated Info

36

Christensen GL, et al. (2010) Quantitative phosphoproteomics dissection of seven-transmembrane receptor signaling using full and biased agonists. Mol Cell Proteomics 9, 1540-53
20363803   Curated Info

37

Olsen JV, et al. (2010) Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal 3, ra3
20068231   Curated Info

38

Pan C, Olsen JV, Daub H, Mann M (2009) Global effects of kinase inhibitors on signaling networks revealed by quantitative phosphoproteomics. Mol Cell Proteomics 8, 2796-808
19651622   Curated Info

39

Van Hoof D, et al. (2009) Phosphorylation dynamics during early differentiation of human embryonic stem cells. Cell Stem Cell 5, 214-26
19664995   Curated Info

40

Possemato A (2009) CST Curation Set: 6913; Year: 2009; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: RXXp[ST] Antibodies Used to Purify Peptides prior to LCMS: Phospho-Akt Substrate (RXRXXS/T) (110B7) Rabbit mAb Cat#: 9614, PTMScan(R) Phospho-Akt Substrate Motif (RXXS*/T*) Immunoaffinity Beads Cat#: 1978
Curated Info

41

Possemato A (2009) CST Curation Set: 6912; Year: 2009; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: RXXp[ST] Antibodies Used to Purify Peptides prior to LCMS: Phospho-Akt Substrate (RXRXXS/T) (110B7) Rabbit mAb Cat#: 9614, PTMScan(R) Phospho-Akt Substrate Motif (RXXS*/T*) Immunoaffinity Beads Cat#: 1978
Curated Info

42

Chen RQ, et al. (2009) CDC25B mediates rapamycin-induced oncogenic responses in cancer cells. Cancer Res 69, 2663-8
19276368   Curated Info

43

Dephoure N, et al. (2008) A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci U S A 105, 10762-7
18669648   Curated Info

44

Ruse CI, et al. (2008) Motif-specific sampling of phosphoproteomes. J Proteome Res 7, 2140-50
18452278   Curated Info

45

Cantin GT, et al. (2008) Combining protein-based IMAC, peptide-based IMAC, and MudPIT for efficient phosphoproteomic analysis. J Proteome Res 7, 1346-51
18220336   Curated Info