Ser72
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.7.1.1
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser72  -  EEF2K (human)

Site Information
ksERysssGsPANsF   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 3150896

In vivo Characterization
Methods used to characterize site in vivo:
mass spectrometry ( 1 , 2 , 3 , 4 , 6 , 7 , 8 , 9 , 10 )
Disease tissue studied:
breast cancer ( 1 , 2 , 4 , 7 ) , leukemia ( 1 , 10 ) , acute myelogenous leukemia ( 1 ) , acute erythroid leukemias, including erythroleukemia (M6a) and very rare pure erythroid leukemia (M6b) ( 1 ) , acute megakaryoblastic leukemia (M7) ( 1 ) , acute monoblastic leukemia (M5a) or acute monocytic leukemia (M5b) ( 1 ) , acute myeloblastic leukemia, with granulocytic maturation (M2) ( 1 ) , chronic myelogenous leukemia ( 10 ) , lung cancer ( 8 ) , non-small cell lung cancer ( 8 ) , testicular cancer ( 1 ) , Down syndrome ( 1 )
Relevant cell line - cell type - tissue:

Upstream Regulation
Putative in vivo kinases:
mTOR (human) ( 9 )
Treatments:
lapatinib ( 7 ) , pictilisib ( 1 ) , rapamycin ( 9 ) , Torin1 ( 9 ) , Trametinib ( 1 )

Downstream Regulation
Effects of modification on EEF2K:
enzymatic activity, inhibited ( 1 )
Effects of modification on biological processes:
carcinogenesis, induced ( 1 ) , cell growth, induced ( 1 ) , translation, induced ( 1 )

References 

1

Hijazi M, et al. (2022) eEF2K activity determines synergy to co-treatment of cancer cells with PI3K and MEK inhibitors. Mol Cell Proteomics 21, 100240
35513296   Curated Info

2

Carrier M, et al. (2016) Phosphoproteome and Transcriptome of RA-Responsive and RA-Resistant Breast Cancer Cell Lines. PLoS One 11, e0157290
27362937   Curated Info

3

Sharma K, et al. (2014) Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep 8, 1583-94
25159151   Curated Info

4

Yi T, et al. (2014) Quantitative phosphoproteomic analysis reveals system-wide signaling pathways downstream of SDF-1/CXCR4 in breast cancer stem cells. Proc Natl Acad Sci U S A 111, E2182-90
24782546   Curated Info

5

Shiromizu T, et al. (2013) Identification of missing proteins in the neXtProt database and unregistered phosphopeptides in the PhosphoSitePlus database as part of the Chromosome-centric Human Proteome Project. J Proteome Res 12, 2414-21
23312004   Curated Info

6

Zhou H, et al. (2013) Toward a comprehensive characterization of a human cancer cell phosphoproteome. J Proteome Res 12, 260-71
23186163   Curated Info

7

Imami K, et al. (2012) Temporal profiling of lapatinib-suppressed phosphorylation signals in EGFR/HER2 pathways. Mol Cell Proteomics 11, 1741-57
22964224   Curated Info

8

Klammer M, et al. (2012) Phosphosignature predicts dasatinib response in non-small cell lung cancer. Mol Cell Proteomics 11, 651-68
22617229   Curated Info

9

Hsu PP, et al. (2011) The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332, 1317-22
21659604   Curated Info

10

Stokes M (2008) CST Curation Set: 4393; Year: 2008; Biosample/Treatment: cell line, K562/untreated; Disease: chronic myelogenous leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[STY])
Curated Info