Tyr951
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.5.9.3
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Tyr951  -  VEGFR2 (human)

Site Information
RFRQGKDyVGAIPVD   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 447903

In vivo Characterization
Methods used to characterize site in vivo:
[32P] bio-synthetic labeling ( 18 ) , immunoassay ( 8 ) , immunoprecipitation ( 5 , 11 , 18 ) , mass spectrometry ( 6 , 7 , 14 ) , mutation of modification site ( 11 , 15 , 17 , 18 ) , phospho-antibody ( 1 , 2 , 3 , 4 , 5 , 8 , 9 , 11 , 12 , 13 , 15 , 16 , 18 ) , western blotting ( 2 , 3 , 4 , 5 , 9 , 11 , 12 , 13 , 15 , 16 )
Disease tissue studied:
ventricular tachycardia ( 7 )
Relevant cell line - cell type - tissue:
293 (epithelial) ( 11 , 18 ) , endothelial-umbilical vein [VEGFR2 (human)] ( 17 ) , heart ( 7 ) , hUCB-MSCs ( 1 ) , HUVEC (endothelial) ( 2 , 3 , 4 , 5 , 9 , 11 , 13 , 15 , 16 ) , Jurkat (T lymphocyte) ( 6 ) , microvessel endothelial ( 12 ) , PT-67 ( 15 )

Upstream Regulation
Regulatory protein:
SHP-1 (human) ( 13 ) , TGM2 (human) ( 4 )
Putative in vivo kinases:
VEGFR2 (human) ( 18 )
Kinases, in vitro:
VEGFR2 (human) ( 18 , 19 )
Putative upstream phosphatases:
PTPRJ (human) ( 11 )
Phosphatases, in vitro:
PTPRJ (human) ( 11 )
Treatments:
2-deoxyglucose ( 10 ) , conditioned medium ( 12 ) , diabetes ( 2 ) , enzastaurin ( 12 ) , hypoxia ( 1 ) , ionizing_radiation ( 12 ) , laulimalide ( 16 ) , PP2 ( 13 ) , PP3 ( 13 ) , siRNA ( 13 ) , VEGF ( 9 , 13 , 16 , 18 ) , VEGF_Ax ( 3 )

Downstream Regulation
Effects of modification on VEGFR2:
activity, induced ( 17 ) , enzymatic activity, induced ( 18 ) , molecular association, regulation ( 18 ) , phosphorylation ( 15 , 17 ) , receptor internalization, altered ( 18 )
Effects of modification on biological processes:
cell growth, induced ( 2 ) , cell motility, altered ( 15 , 17 )
Induce interaction with:
PLCG1 (human) ( 18 )

Disease / Diagnostics Relevance
Relevant diseases:
HNSCC ( 8 )

References 

1

Han KH, et al. (2017) Protein profiling and angiogenic effect of hypoxia-cultured human umbilical cord blood-derived mesenchymal stem cells in hindlimb ischemia. Tissue Cell 49, 680-690
28958480   Curated Info

2

Troncoso F, et al. (2017) Gestational diabetes mellitus is associated with increased pro-migratory activation of vascular endothelial growth factor receptor 2 and reduced expression of vascular endothelial growth factor receptor 1. PLoS One 12, e0182509
28817576   Curated Info

3

Xin H, Zhong C, Nudleman E, Ferrara N (2016) Evidence for Pro-angiogenic Functions of VEGF-Ax. Cell 167, 275-284.e6
27662093   Curated Info

4

Beckouche N, et al. (2015) The interaction of heparan sulfate proteoglycans with endothelial transglutaminase-2 limits VEGF165-induced angiogenesis. Sci Signal 8, ra70
26175493   Curated Info

5

Anselmi F, et al. (2012) c-ABL modulates MAP kinases activation downstream of VEGFR-2 signaling by direct phosphorylation of the adaptor proteins GRB2 and NCK1. Angiogenesis 15, 187-97
22327338   Curated Info

6

Guo A (2011) CST Curation Set: 12453; Year: 2011; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: (K/R)Xp[ST](I/L/V)
Curated Info

7

Li Y (2011) CST Curation Set: 10524; Year: 2011; Biosample/Treatment: tissue, heart/untreated; Disease: ventricular tachycardia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: pY Antibodies Used to Purify Peptides prior to LCMS: Phospho-Tyrosine Mouse mAb (P-Tyr-100) Cat#: 9411, PTMScan(R) Phospho-Tyr Motif (Y*) Immunoaffinity Beads Cat#: 1991
Curated Info

8

Frederick MJ, et al. (2011) Phosphoproteomic analysis of signaling pathways in head and neck squamous cell carcinoma patient samples. Am J Pathol 178, 548-71
21281788   Curated Info

9

Chen TT, et al. (2010) Anchorage of VEGF to the extracellular matrix conveys differential signaling responses to endothelial cells. J Cell Biol 188, 595-609
20176926   Curated Info

10

Zhong D, et al. (2009) The Glycolytic Inhibitor 2-Deoxyglucose Activates Multiple Prosurvival Pathways through IGF1R. J Biol Chem 284, 23225-33
19574224   Curated Info

11

Chabot C, et al. (2009) New role for the protein tyrosine phosphatase DEP-1 in Akt activation and endothelial cell survival. Mol Cell Biol 29, 241-53
18936167   Curated Info

12

Spalding AC, et al. (2008) Enzastaurin, an inhibitor of PKCbeta, Enhances Antiangiogenic Effects and Cytotoxicity of Radiation against Endothelial Cells. Transl Oncol 1, 195-201
19043530   Curated Info

13

Bhattacharya R, et al. (2008) Src homology 2 (SH2) domain containing protein tyrosine phosphatase-1 (SHP-1) dephosphorylates VEGF Receptor-2 and attenuates endothelial DNA synthesis, but not migration*. J Mol Signal 3, 8
18377662   Curated Info

14

Gu T (2006) CST Curation Set: 2064; Year: 2006; Biosample/Treatment: tissue, bone marrow/-; Disease: acute myelogenous leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: pY Antibodies Used to Purify Peptides prior to LCMS: Phospho-Tyrosine Mouse mAb (P-Tyr-100) Cat#: 9411, PTMScan(R) Phospho-Tyr Motif (Y*) Immunoaffinity Beads Cat#: 1991
Curated Info

15

Qin L, Zeng H, Zhao D (2006) Requirement of protein kinase D tyrosine phosphorylation for VEGF-A165-induced angiogenesis through its interaction and regulation of phospholipase Cgamma phosphorylation. J Biol Chem 281, 32550-8
16891660   Curated Info

16

Lu H, Murtagh J, Schwartz EL (2006) The microtubule binding drug laulimalide inhibits vascular endothelial growth factor-induced human endothelial cell migration and is synergistic when combined with docetaxel (taxotere). Mol Pharmacol 69, 1207-15
16415178   Curated Info

17

Zeng H, Sanyal S, Mukhopadhyay D (2001) Tyrosine residues 951 and 1059 of vascular endothelial growth factor receptor-2 (KDR) are essential for vascular permeability factor/vascular endothelial growth factor-induced endothelium migration and proliferation, respectively. J Biol Chem 276, 32714-9
11435426   Curated Info

18

Dougher M, Terman BI (1999) Autophosphorylation of KDR in the kinase domain is required for maximal VEGF-stimulated kinase activity and receptor internalization. Oncogene 18, 1619-27
10102632   Curated Info

19

Dougher-Vermazen M, Hulmes JD, Böhlen P, Terman BI (1994) Biological activity and phosphorylation sites of the bacterially expressed cytosolic domain of the KDR VEGF-receptor. Biochem Biophys Res Commun 205, 728-38
7999104   Curated Info