Ser20
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.5.9.1
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser20  -  KHDRBS1 (human)

Site Information
RssGrsGsMDPsGAH   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 457016

In vivo Characterization
Methods used to characterize site in vivo:
mass spectrometry ( 1 , 2 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 14 , 15 , 16 , 17 , 18 , 19 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 )
Disease tissue studied:
breast cancer ( 8 , 9 , 15 ) , breast ductal carcinoma ( 8 ) , HER2 positive breast cancer ( 2 ) , luminal A breast cancer ( 2 ) , luminal B breast cancer ( 2 ) , breast cancer, surrounding tissue ( 2 ) , breast cancer, triple negative ( 2 , 8 ) , cervical cancer ( 37 ) , cervical adenocarcinoma ( 37 ) , leukemia ( 21 , 31 , 32 , 33 ) , acute myelogenous leukemia ( 21 ) , chronic myelogenous leukemia ( 31 , 32 , 33 ) , lung cancer ( 5 , 11 , 16 , 24 , 27 , 46 ) , non-small cell lung cancer ( 16 , 46 ) , non-small cell lung adenocarcinoma ( 5 , 11 , 24 ) , ovarian cancer ( 8 ) , pancreatic ductal adenocarcinoma ( 10 ) , prostate cancer ( 36 ) , melanoma skin cancer ( 4 )
Relevant cell line - cell type - tissue:
'pancreatic, ductal'-pancreas ( 10 ) , 293 (epithelial) [AT1 (human), transfection, AT1R stable transfected HEK293] ( 34 ) , 293 (epithelial) [AT1 (human), transfection] ( 30 ) , 293 (epithelial) ( 7 ) , 293E (epithelial) ( 23 ) , breast ( 2 , 8 ) , Calu 6 (pulmonary) ( 16 ) , CL1-0 (pulmonary) ( 27 ) , CL1-1 (pulmonary) ( 27 ) , CL1-2 (pulmonary) ( 27 ) , CL1-5 (pulmonary) ( 27 ) , endothelial-aorta ( 17 ) , Flp-In T-Rex-293 (epithelial) [PRKD1 (human), genetic knockin] ( 19 ) , Flp-In T-Rex-293 (epithelial) ( 19 ) , GM00130 (B lymphocyte) ( 35 ) , H2009 (pulmonary) ( 16 ) , H2077 (pulmonary) ( 16 ) , H2887 (pulmonary) ( 16 ) , H322M (pulmonary) ( 16 ) , HCC1359 (pulmonary) ( 16 ) , HCC2279 (pulmonary) ( 16 ) , HCC366 (pulmonary) ( 16 ) , HCC4006 (pulmonary) ( 16 ) , HCC78 (pulmonary) ( 16 ) , HCC827 (pulmonary) ( 16 ) , HEK293T (epithelial) ( 50 ) , HeLa (cervical) ( 1 , 6 , 14 , 25 , 38 , 40 , 41 , 42 , 47 , 48 , 49 ) , HeLa S3 (cervical) ( 37 ) , HMLER ('stem, breast cancer') [CXCR4 (human), knockdown] ( 9 ) , HMLER ('stem, breast cancer') ( 9 ) , HOP62 (pulmonary) ( 16 ) , HT-29 (intestinal) ( 51 ) , HUES-7 ('stem, embryonic') ( 39 ) , Jurkat (T lymphocyte) ( 12 , 22 , 26 , 28 , 29 , 43 , 44 , 45 ) , K562 (erythroid) ( 14 , 31 , 32 , 33 ) , KG-1 (myeloid) ( 21 ) , LCLC-103H (pulmonary) ( 16 ) , LNCaP (prostate cell) ( 36 ) , lung ( 11 ) , NCI-H1299 (pulmonary) ( 46 ) , NCI-H1395 (pulmonary) ( 16 ) , NCI-H1568 (pulmonary) ( 16 ) , NCI-H157 (pulmonary) ( 16 ) , NCI-H1648 (pulmonary) ( 16 ) , NCI-H1666 (pulmonary) ( 16 ) , NCI-H2030 (pulmonary) ( 16 ) , NCI-H2172 (pulmonary) ( 16 ) , NCI-H322 (pulmonary) ( 16 ) , NCI-H520 (squamous) ( 16 ) , NCI-H647 (pulmonary) ( 16 ) , ovary ( 8 ) , PC9 (pulmonary) ( 5 , 16 ) , SKBr3 (breast cell) ( 15 ) , T lymphocyte-blood ( 18 ) , U-1810 (pulmonary) [EFNB3 (human), knockdown] ( 24 ) , U-1810 (pulmonary) ( 24 ) , WM239A (melanocyte) ( 4 )

Upstream Regulation
Treatments:
anti-CD3 ( 18 ) , EGF ( 1 ) , ischemia ( 8 ) , lapatinib ( 15 ) , metastatic potential ( 27 ) , nocodazole ( 37 )

References 

1

Huang H, et al. (2016) Simultaneous Enrichment of Cysteine-containing Peptides and Phosphopeptides Using a Cysteine-specific Phosphonate Adaptable Tag (CysPAT) in Combination with titanium dioxide (TiO2) Chromatography. Mol Cell Proteomics 15, 3282-3296
27281782   Curated Info

2

Mertins P, et al. (2016) Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534, 55-62
27251275   Curated Info

3

Boeing S, et al. (2016) Multiomic Analysis of the UV-Induced DNA Damage Response. Cell Rep 15, 1597-1610
27184836   Curated Info

4

Stuart SA, et al. (2015) A Phosphoproteomic Comparison of B-RAFV600E and MKK1/2 Inhibitors in Melanoma Cells. Mol Cell Proteomics 14, 1599-615
25850435   Curated Info

5

Tsai CF, et al. (2015) Large-scale determination of absolute phosphorylation stoichiometries in human cells by motif-targeting quantitative proteomics. Nat Commun 6, 6622
25814448   Curated Info

6

Sharma K, et al. (2014) Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep 8, 1583-94
25159151   Curated Info

7

Wang R, et al. (2014) Global discovery of high-NaCl-induced changes of protein phosphorylation. Am J Physiol Cell Physiol 307, C442-54
24965592   Curated Info

8

Mertins P, et al. (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol Cell Proteomics 13, 1690-704
24719451   Curated Info

9

Yi T, et al. (2014) Quantitative phosphoproteomic analysis reveals system-wide signaling pathways downstream of SDF-1/CXCR4 in breast cancer stem cells. Proc Natl Acad Sci U S A 111, E2182-90
24782546   Curated Info

10

Britton D, et al. (2014) Quantification of pancreatic cancer proteome and phosphorylome: indicates molecular events likely contributing to cancer and activity of drug targets. PLoS One 9, e90948
24670416   Curated Info

11

Schweppe DK, Rigas JR, Gerber SA (2013) Quantitative phosphoproteomic profiling of human non-small cell lung cancer tumors. J Proteomics 91, 286-96
23911959   Curated Info

12

Mertins P, et al. (2013) Integrated proteomic analysis of post-translational modifications by serial enrichment. Nat Methods 10, 634-7
23749302   Curated Info

13

Shiromizu T, et al. (2013) Identification of missing proteins in the neXtProt database and unregistered phosphopeptides in the PhosphoSitePlus database as part of the Chromosome-centric Human Proteome Project. J Proteome Res 12, 2414-21
23312004   Curated Info

14

Zhou H, et al. (2013) Toward a comprehensive characterization of a human cancer cell phosphoproteome. J Proteome Res 12, 260-71
23186163   Curated Info

15

Imami K, et al. (2012) Temporal profiling of lapatinib-suppressed phosphorylation signals in EGFR/HER2 pathways. Mol Cell Proteomics 11, 1741-57
22964224   Curated Info

16

Klammer M, et al. (2012) Phosphosignature predicts dasatinib response in non-small cell lung cancer. Mol Cell Proteomics 11, 651-68
22617229   Curated Info

17

Verano-Braga T, et al. (2012) Time-resolved quantitative phosphoproteomics: new insights into Angiotensin-(1-7) signaling networks in human endothelial cells. J Proteome Res 11, 3370-81
22497526   Curated Info

18

Ruperez P, Gago-Martinez A, Burlingame AL, Oses-Prieto JA (2012) Quantitative phosphoproteomic analysis reveals a role for serine and threonine kinases in the cytoskeletal reorganization in early T cell receptor activation in human primary T cells. Mol Cell Proteomics 11, 171-86
22499768   Curated Info

19

Franz-Wachtel M, et al. (2012) Global detection of protein kinase D-dependent phosphorylation events in nocodazole-treated human cells. Mol Cell Proteomics 11, 160-70
22496350   Curated Info

20

Beli P, et al. (2012) Proteomic Investigations Reveal a Role for RNA Processing Factor THRAP3 in the DNA Damage Response. Mol Cell 46, 212-25
22424773   Curated Info

21

Weber C, Schreiber TB, Daub H (2012) Dual phosphoproteomics and chemical proteomics analysis of erlotinib and gefitinib interference in acute myeloid leukemia cells. J Proteomics 75, 1343-56
22115753   Curated Info

22

Mulhern D (2011) CST Curation Set: 12552; Year: 2011; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[ST]P
Curated Info

23

Hsu PP, et al. (2011) The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332, 1317-22
21659604   Curated Info

24

Ståhl S, et al. (2011) Phosphoproteomic profiling of NSCLC cells reveals that ephrin B3 regulates pro-survival signaling through Akt1-mediated phosphorylation of the EphA2 receptor. J Proteome Res 10, 2566-78
21413766   Curated Info

25

Kettenbach AN, et al. (2011) Quantitative phosphoproteomics identifies substrates and functional modules of aurora and polo-like kinase activities in mitotic cells. Sci Signal 4, rs5
21712546   Curated Info

26

Possemato A (2010) CST Curation Set: 10867; Year: 2010; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: (F/Y/M)Xp[ST](L/I/M)
Curated Info

27

Wang YT, et al. (2010) An informatics-assisted label-free quantitation strategy that depicts phosphoproteomic profiles in lung cancer cell invasion. J Proteome Res 9, 5582-97
20815410   Curated Info

28

Possemato A (2010) CST Curation Set: 10795; Year: 2010; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: RXXp[ST]
Curated Info

29

Possemato A (2010) CST Curation Set: 10838; Year: 2010; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: RXXp[ST] Antibodies Used to Purify Peptides prior to LCMS: Phospho-Akt Substrate (RXRXXS*/T*) (23C8D2) Rabbit mAb Cat#: 10001, PTMScan(R) Phospho-Akt Substrate Motif (RXRXXS*/T*) Immunoaffinity Beads Cat#: 1979
Curated Info

30

Xiao K, et al. (2010) Global phosphorylation analysis of beta-arrestin-mediated signaling downstream of a seven transmembrane receptor (7TMR). Proc Natl Acad Sci U S A 107, 15299-304
20686112   Curated Info

31

Beausoleil S (2010) CST Curation Set: 10278; Year: 2010; Biosample/Treatment: cell line, K-562/untreated; Disease: chronic myelogenous leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: RXXp[ST]
Curated Info

32

Beausoleil S (2010) CST Curation Set: 10284; Year: 2010; Biosample/Treatment: cell line, K-562/untreated; Disease: chronic myelogenous leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: RXXp[ST]
Curated Info

33

Beausoleil S (2010) CST Curation Set: 10279; Year: 2010; Biosample/Treatment: cell line, K-562/untreated; Disease: chronic myelogenous leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: RXXp[ST]
Curated Info

34

Christensen GL, et al. (2010) Quantitative phosphoproteomics dissection of seven-transmembrane receptor signaling using full and biased agonists. Mol Cell Proteomics 9, 1540-53
20363803   Curated Info

35

Bennetzen MV, et al. (2010) Site-specific phosphorylation dynamics of the nuclear proteome during the DNA damage response. Mol Cell Proteomics 9, 1314-23
20164059   Curated Info

36

Chen L, Giorgianni F, Beranova-Giorgianni S (2010) Characterization of the phosphoproteome in LNCaP prostate cancer cells by in-gel isoelectric focusing and tandem mass spectrometry. J Proteome Res 9, 174-8
20044836   Curated Info

37

Olsen JV, et al. (2010) Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal 3, ra3
20068231   Curated Info

38

Zhou J (2009) CST Curation Set: 7757; Year: 2009; Biosample/Treatment: cell line, HeLa/untreated; Disease: cervical adenocarcinoma; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: RXXp[ST] Antibodies Used to Purify Peptides prior to LCMS: Phospho-Akt Substrate (RXRXXT-P) (60D12F4) Rabbit mAb Cat#: 10002
Curated Info

39

Van Hoof D, et al. (2009) Phosphorylation dynamics during early differentiation of human embryonic stem cells. Cell Stem Cell 5, 214-26
19664995   Curated Info

40

Nagano K, et al. (2009) Phosphoproteomic analysis of distinct tumor cell lines in response to nocodazole treatment. Proteomics 9, 2861-74
19415658   Curated Info

41

Chen Y, et al. (2009) Combined integrin phosphoproteomic analyses and small interfering RNA--based functional screening identify key regulators for cancer cell adhesion and migration. Cancer Res 69, 3713-20
19351860   Curated Info

42

Chen RQ, et al. (2009) CDC25B mediates rapamycin-induced oncogenic responses in cancer cells. Cancer Res 69, 2663-8
19276368   Curated Info

43

Zhou J (2009) CST Curation Set: 6053; Year: 2009; Biosample/Treatment: cell line, Jurkat/TPA; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: (F/Y/M)Xp[ST](L/I/M)
Curated Info

44

Zhou J (2009) CST Curation Set: 6049; Year: 2009; Biosample/Treatment: cell line, Jurkat/TPA; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: (F/Y/M)Xp[ST](L/I/M)
Curated Info

45

Zhou J (2009) CST Curation Set: 6050; Year: 2009; Biosample/Treatment: cell line, Jurkat/TPA; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: (F/Y/M)Xp[ST](L/I/M)
Curated Info

46

Tsai CF, et al. (2008) Immobilized metal affinity chromatography revisited: pH/acid control toward high selectivity in phosphoproteomics. J Proteome Res 7, 4058-69
18707149   Curated Info

47

Dephoure N, et al. (2008) A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci U S A 105, 10762-7
18669648   Curated Info

48

Ruse CI, et al. (2008) Motif-specific sampling of phosphoproteomes. J Proteome Res 7, 2140-50
18452278   Curated Info

49

Cantin GT, et al. (2008) Combining protein-based IMAC, peptide-based IMAC, and MudPIT for efficient phosphoproteomic analysis. J Proteome Res 7, 1346-51
18220336   Curated Info

50

Molina H, et al. (2007) Global proteomic profiling of phosphopeptides using electron transfer dissociation tandem mass spectrometry. Proc Natl Acad Sci U S A 104, 2199-204
17287340   Curated Info

51

Kim JE, Tannenbaum SR, White FM (2005) Global phosphoproteome of HT-29 human colon adenocarcinoma cells. J Proteome Res 4, 1339-46
16083285   Curated Info