Ser210
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.5.9.2
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser210  -  MCT1 (mouse)

Site Information
VkLEKLKskEsLQEA   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 456585

In vivo Characterization
Methods used to characterize site in vivo:
mass spectrometry ( 1 , 2 , 3 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 )
Disease tissue studied:
leukemia ( 14 ) , acute myelogenous leukemia ( 14 ) , neuroblastoma ( 17 ) , melanoma skin cancer ( 23 )
Relevant cell line - cell type - tissue:
'3T3-L1, differentiated' (adipocyte) ( 5 , 8 ) , 'brain, cerebellum' ( 11 ) , 'fat, brown' ( 18 ) , 32Dcl3 (myeloid) [FLT3 (mouse), transfection, chimera with human FLT3-ITD mutant (corresponding to wild type P36888 ( 22 ) , 32Dcl3 (myeloid) ( 22 ) , BaF3 ('B lymphocyte, precursor') [JAK3 (human), transfection] ( 1 ) , BAT (adipocyte) ( 19 ) , blood ( 14 ) , brain ( 18 , 20 ) , C2C12 (myoblast) ( 19 ) , heart ( 9 , 18 ) , Hepa 1-6 (epithelial) ( 24 ) , HL-1 (myocyte) [Akt1 (mouse), knockdown, stable lentiviral expression of Akt1 shRNA] ( 7 ) , HL-1 (myocyte) [Akt2 (mouse), knockdown, stable lentiviral expression of Akt2 shRNA] ( 7 ) , HL-1 (myocyte) ( 7 ) , kidney ( 18 ) , liver ( 3 , 13 , 25 ) , liver [leptin (mouse), homozygous knockout] ( 13 ) , lung ( 18 ) , macrophage-peritoneum ( 12 ) , MEF (fibroblast) ( 2 , 10 , 12 , 16 ) , MEF (fibroblast) [AMPKA1 (mouse), homozygous knockout] ( 2 ) , MEF (fibroblast) [p53 (mouse), homozygous knockout] ( 15 ) , MEF (fibroblast) [Raptor (mouse), knockdown] ( 10 ) , MEF (fibroblast) [RICTOR (mouse), knockdown] ( 10 ) , MEF (fibroblast) [TSC2 (mouse), homozygous knockout] ( 16 ) , mpkCCD (renal) ( 21 ) , N1E-115 (neuron) ( 17 ) , neuron:synaptosome-'brain, forebrain' ( 26 ) , RAW 264.7 (macrophage) ( 6 ) , skin [mGluR1 (mouse), transgenic, TG mutant mice] ( 23 ) , spleen ( 18 ) , testis ( 18 )

Upstream Regulation
Regulatory protein:
RICTOR (mouse) ( 10 ) , TSC2 (mouse) ( 15 )

References 

1

Degryse S, et al. (2017) Mutant JAK3 phosphoproteomic profiling predicts synergism between JAK3 inhibitors and MEK/BCL2 inhibitors for the treatment of T-cell acute lymphoblastic leukemia. Leukemia
28852199   Curated Info

2

Zibrova D, et al. (2017) GFAT1 phosphorylation by AMPK promotes VEGF-induced angiogenesis. Biochem J 474, 983-1001
28008135   Curated Info

3

Robles MS, Humphrey SJ, Mann M (2017) Phosphorylation Is a Central Mechanism for Circadian Control of Metabolism and Physiology. Cell Metab 25, 118-127
27818261   Curated Info

4

Sacco F, et al. (2016) Glucose-regulated and drug-perturbed phosphoproteome reveals molecular mechanisms controlling insulin secretion. Nat Commun 7, 13250
27841257   Curated Info

5

Minard AY, et al. (2016) mTORC1 Is a Major Regulatory Node in the FGF21 Signaling Network in Adipocytes. Cell Rep 17, 29-36
27681418   Curated Info

6

Pinto SM, et al. (2015) Quantitative phosphoproteomic analysis of IL-33-mediated signaling. Proteomics 15, 532-44
25367039   Curated Info

7

Reinartz M, Raupach A, Kaisers W, Gödecke A (2014) AKT1 and AKT2 induce distinct phosphorylation patterns in HL-1 cardiac myocytes. J Proteome Res 13, 4232-45
25162660   Curated Info

8

Humphrey SJ, et al. (2013) Dynamic Adipocyte Phosphoproteome Reveals that Akt Directly Regulates mTORC2. Cell Metab 17, 1009-20
23684622   Curated Info

9

Lundby A, et al. (2013) In vivo phosphoproteomics analysis reveals the cardiac targets of β-adrenergic receptor signaling. Sci Signal 6, rs11
23737553   Curated Info

10

Robitaille AM, et al. (2013) Quantitative phosphoproteomics reveal mTORC1 activates de novo pyrimidine synthesis. Science 339, 1320-3
23429704   Curated Info

11

Schindler J, Ye J, Jensen ON, Nothwang HG (2013) Monitoring the native phosphorylation state of plasma membrane proteins from a single mouse cerebellum. J Neurosci Methods 213, 153-64
23246975   Curated Info

12

Wu X, et al. (2012) Investigation of receptor interacting protein (RIP3)-dependent protein phosphorylation by quantitative phosphoproteomics. Mol Cell Proteomics 11, 1640-51
22942356   Curated Info

13

Grimsrud PA, et al. (2012) A quantitative map of the liver mitochondrial phosphoproteome reveals posttranslational control of ketogenesis. Cell Metab 16, 672-83
23140645   Curated Info

14

Trost M, et al. (2012) Posttranslational regulation of self-renewal capacity: insights from proteome and phosphoproteome analyses of stem cell leukemia. Blood 120, e17-27
22802335   Curated Info

15

Hsu PP, et al. (2011) The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332, 1317-22
21659604   Curated Info

16

Yu Y, et al. (2011) Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science 332, 1322-6
21659605   Curated Info

17

Wang Y, et al. (2011) Spatial phosphoprotein profiling reveals a compartmentalized extracellular signal-regulated kinase switch governing neurite growth and retraction. J Biol Chem 286, 18190-201
21454597   Curated Info

18

Huttlin EL, et al. (2010) A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 143, 1174-89
21183079   Curated Info

19

Gnad F, et al. (2010) Evolutionary constraints of phosphorylation in eukaryotes, prokaryotes, and mitochondria. Mol Cell Proteomics 9, 2642-53
20688971   Curated Info

20

Wiśniewski JR, et al. (2010) Brain phosphoproteome obtained by a FASP-based method reveals plasma membrane protein topology. J Proteome Res 9, 3280-9
20415495   Curated Info

21

Rinschen MM, et al. (2010) Quantitative phosphoproteomic analysis reveals vasopressin V2-receptor-dependent signaling pathways in renal collecting duct cells. Proc Natl Acad Sci U S A 107, 3882-7
20139300   Curated Info

22

Choudhary C, et al. (2009) Mislocalized activation of oncogenic RTKs switches downstream signaling outcomes. Mol Cell 36, 326-39
19854140   Curated Info

23

Zanivan S, et al. (2008) Solid tumor proteome and phosphoproteome analysis by high resolution mass spectrometry. J Proteome Res 7, 5314-26
19367708   Curated Info

24

Pan C, Gnad F, Olsen JV, Mann M (2008) Quantitative phosphoproteome analysis of a mouse liver cell line reveals specificity of phosphatase inhibitors. Proteomics 8, 4534-46
18846507   Curated Info

25

Villén J, Beausoleil SA, Gerber SA, Gygi SP (2007) Large-scale phosphorylation analysis of mouse liver. Proc Natl Acad Sci U S A 104, 1488-93
17242355   Curated Info

26

Collins MO, et al. (2005) Proteomic analysis of in vivo phosphorylated synaptic proteins. J Biol Chem 280, 5972-82
15572359   Curated Info