Ser161
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.5.9.1
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser161  -  RCAN1 (mouse)

Site Information
PDKQFLIsPPAsPPV   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 456022

In vivo Characterization
Methods used to characterize site in vivo:
[32P] bio-synthetic labeling ( 13 ) , mass spectrometry ( 2 , 4 , 5 , 7 , 8 , 9 , 10 , 11 , 12 ) , mass spectrometry (in vitro) ( 6 ) , mutation of modification site ( 13 )
Disease tissue studied:
anthrax infection ( 8 ) , melanoma skin cancer ( 12 )
Relevant cell line - cell type - tissue:
'fat, brown' ( 9 ) , 32Dcl3 (myeloid) [FLT3 (mouse), transfection, chimera with human FLT3-ITD mutant (corresponding to wild type P36888 ( 11 ) , 32Dcl3 (myeloid) ( 11 ) , brain ( 9 ) , C2C12 (myoblast) ( 13 ) , heart ( 4 , 9 ) , kidney ( 9 ) , liver ( 2 ) , lung ( 9 ) , macrophage-bone marrow ( 10 ) , macrophage-bone marrow [DUSP1 (mouse), homozygous knockout] ( 10 ) , MEF (fibroblast) ( 5 ) , MEF (fibroblast) [p53 (mouse), homozygous knockout] ( 7 ) , MEF (fibroblast) [Raptor (mouse), knockdown] ( 5 ) , MEF (fibroblast) [RICTOR (mouse), knockdown] ( 5 ) , skin [mGluR1 (mouse), transgenic, TG mutant mice] ( 12 ) , spleen ( 8 , 9 )

Upstream Regulation
Kinases, in vitro:
GSK3B (mouse) ( 13 ) , P38A (human) ( 6 )

Downstream Regulation
Effects of modification on RCAN1:
molecular association, regulation ( 6 )
Inhibit interaction with:
PPP3CA (mouse) ( 6 )

References 

1

Mertins P, et al. (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol Cell Proteomics 13, 1690-704
24719451   Curated Info

2

Wilson-Grady JT, Haas W, Gygi SP (2013) Quantitative comparison of the fasted and re-fed mouse liver phosphoproteomes using lower pH reductive dimethylation. Methods 61, 277-86
23567750   Curated Info

3

Humphrey SJ, et al. (2013) Dynamic Adipocyte Phosphoproteome Reveals that Akt Directly Regulates mTORC2. Cell Metab 17, 1009-20
23684622   Curated Info

4

Lundby A, et al. (2013) In vivo phosphoproteomics analysis reveals the cardiac targets of β-adrenergic receptor signaling. Sci Signal 6, rs11
23737553   Curated Info

5

Robitaille AM, et al. (2013) Quantitative phosphoproteomics reveal mTORC1 activates de novo pyrimidine synthesis. Science 339, 1320-3
23429704   Curated Info

6

Ma L, et al. (2012) p38α MAP kinase phosphorylates RCAN1 and regulates its interaction with calcineurin. Sci China Life Sci 55, 559-66
22864830   Curated Info

7

Hsu PP, et al. (2011) The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332, 1317-22
21659604   Curated Info

8

Manes NP, et al. (2011) Discovery of mouse spleen signaling responses to anthrax using label-free quantitative phosphoproteomics via mass spectrometry. Mol Cell Proteomics 10, M110.000927
21189417   Curated Info

9

Huttlin EL, et al. (2010) A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 143, 1174-89
21183079   Curated Info

10

Weintz G, et al. (2010) The phosphoproteome of toll-like receptor-activated macrophages. Mol Syst Biol 6, 371
20531401   Curated Info

11

Choudhary C, et al. (2009) Mislocalized activation of oncogenic RTKs switches downstream signaling outcomes. Mol Cell 36, 326-39
19854140   Curated Info

12

Zanivan S, et al. (2008) Solid tumor proteome and phosphoproteome analysis by high resolution mass spectrometry. J Proteome Res 7, 5314-26
19367708   Curated Info

13

Vega RB, et al. (2002) Multiple domains of MCIP1 contribute to inhibition of calcineurin activity. J Biol Chem 277, 30401-7
12063245   Curated Info