Ser9
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.7.1.1
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser9  -  CAPZA2 (mouse)

Site Information
ADLEEQLsDEEKVRI   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 2048201

In vivo Characterization
Methods used to characterize site in vivo:
mass spectrometry ( 1 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 )
Disease tissue studied:
melanoma skin cancer ( 11 )
Relevant cell line - cell type - tissue:
'3T3-L1, differentiated' (adipocyte) ( 4 ) , 'brain, cerebellum' ( 13 ) , 'brain, cerebral cortex' ( 13 ) , 'brain, hippocampus, dentate gyrus' ( 13 ) , 'brain, midbrain' ( 13 ) , 32Dcl3 (myeloid) [FLT3 (mouse), transfection, chimera with human FLT3-ITD mutant (corresponding to wild type P36888 ( 10 ) , 32Dcl3 (myeloid) ( 10 ) , brain ( 9 ) , heart ( 5 ) , Hepa 1-6 (epithelial) ( 12 ) , liver ( 1 ) , macrophage-bone marrow ( 8 ) , macrophage-bone marrow [DUSP1 (mouse), homozygous knockout] ( 8 ) , MEF (fibroblast) [Raptor (mouse), knockdown] ( 6 ) , MEF (fibroblast) [RICTOR (mouse), knockdown] ( 6 ) , MEF (fibroblast) ( 6 ) , skin [mGluR1 (mouse), transgenic, TG mutant mice] ( 11 ) , T lymphocyte-spleen ( 7 )

Upstream Regulation
Regulatory protein:
FLT3 (mouse) ( 10 ) , Raptor (mouse) ( 6 )
Treatments:
insulin ( 4 )

References 

1

Robles MS, Humphrey SJ, Mann M (2017) Phosphorylation Is a Central Mechanism for Circadian Control of Metabolism and Physiology. Cell Metab 25, 118-127
27818261   Curated Info

2

Sacco F, et al. (2016) Glucose-regulated and drug-perturbed phosphoproteome reveals molecular mechanisms controlling insulin secretion. Nat Commun 7, 13250
27841257   Curated Info

3

Mertins P, et al. (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol Cell Proteomics 13, 1690-704
24719451   Curated Info

4

Humphrey SJ, et al. (2013) Dynamic Adipocyte Phosphoproteome Reveals that Akt Directly Regulates mTORC2. Cell Metab 17, 1009-20
23684622   Curated Info

5

Lundby A, et al. (2013) In vivo phosphoproteomics analysis reveals the cardiac targets of β-adrenergic receptor signaling. Sci Signal 6, rs11
23737553   Curated Info

6

Robitaille AM, et al. (2013) Quantitative phosphoproteomics reveal mTORC1 activates de novo pyrimidine synthesis. Science 339, 1320-3
23429704   Curated Info

7

Navarro MN, et al. (2011) Phosphoproteomic analysis reveals an intrinsic pathway for the regulation of histone deacetylase 7 that controls the function of cytotoxic T lymphocytes. Nat Immunol 12, 352-61
21399638   Curated Info

8

Weintz G, et al. (2010) The phosphoproteome of toll-like receptor-activated macrophages. Mol Syst Biol 6, 371
20531401   Curated Info

9

Wiśniewski JR, et al. (2010) Brain phosphoproteome obtained by a FASP-based method reveals plasma membrane protein topology. J Proteome Res 9, 3280-9
20415495   Curated Info

10

Choudhary C, et al. (2009) Mislocalized activation of oncogenic RTKs switches downstream signaling outcomes. Mol Cell 36, 326-39
19854140   Curated Info

11

Zanivan S, et al. (2008) Solid tumor proteome and phosphoproteome analysis by high resolution mass spectrometry. J Proteome Res 7, 5314-26
19367708   Curated Info

12

Pan C, Gnad F, Olsen JV, Mann M (2008) Quantitative phosphoproteome analysis of a mouse liver cell line reveals specificity of phosphatase inhibitors. Proteomics 8, 4534-46
18846507   Curated Info

13

Trinidad JC, et al. (2008) Quantitative analysis of synaptic phosphorylation and protein expression. Mol Cell Proteomics 7, 684-96
18056256   Curated Info