Ser909
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.5.9.2
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser909  -  MYPT1 (mouse)

Site Information
sLLGRsAsySYLEDR   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 1983104

In vivo Characterization
Methods used to characterize site in vivo:
immunoprecipitation ( 3 ) , mass spectrometry ( 2 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 17 , 18 , 19 , 20 ) , mutation of modification site ( 3 ) , phospho-antibody ( 3 , 16 ) , western blotting ( 3 , 16 )
Disease tissue studied:
anthrax infection ( 12 ) , melanoma skin cancer ( 18 )
Relevant cell line - cell type - tissue:
'fat, brown' ( 13 ) , 3T3 (fibroblast) [KRas (human), transfection] ( 5 ) , brain ( 9 ) , ES-J1 (stem) ( 14 ) , fibroblast-skin ( 3 ) , heart ( 7 , 13 ) , Hepa 1-6 (epithelial) ( 19 ) , kidney ( 13 ) , liver ( 6 , 13 , 17 , 20 ) , lung ( 13 ) , macrophage-peritoneum ( 8 ) , MC3T3-E1 (preosteoblast) ( 2 ) , MEF (fibroblast) [LKB1 (mouse), transgenic] ( 16 ) , MEF (fibroblast) [NuaK1 (mouse), transgenic] ( 16 ) , MEF (fibroblast) [p53 (mouse), homozygous knockout] ( 10 ) , mpkCCD (renal) ( 15 ) , pancreas ( 13 ) , skin [mGluR1 (mouse), transgenic, TG mutant mice] ( 18 ) , spleen ( 12 , 13 ) , stromal ( 4 ) , T lymphocyte-spleen ( 11 ) , testis ( 13 )

Upstream Regulation
Regulatory protein:
AMPKA1 (mouse) ( 16 ) , AMPKA2 (mouse) ( 16 ) , KRas (mouse) ( 5 ) , LKB1 (mouse) ( 16 ) , PAK4 (mouse) ( 5 )
Treatments:
A-769662 ( 16 ) , acadesine ( 16 ) , BX795 ( 16 ) , cell_detachment ( 16 ) , EDTA ( 16 ) , ischemia ( 4 )

Downstream Regulation
Effects of modification on MYPT1:
molecular association, regulation ( 3 )
Induce interaction with:
14-3-3 zeta (mouse) ( 3 )

References 

1

Sacco F, et al. (2016) Glucose-regulated and drug-perturbed phosphoproteome reveals molecular mechanisms controlling insulin secretion. Nat Commun 7, 13250
27841257   Curated Info

2

Williams GR, et al. (2016) Exploring G protein-coupled receptor signaling networks using SILAC-based phosphoproteomics. Methods 92, 36-50
26160508   Curated Info

3

Kular J, et al. (2015) A Negative Regulatory Mechanism Involving 14-3-3ζ Limits Signaling Downstream of ROCK to Regulate Tissue Stiffness in Epidermal Homeostasis. Dev Cell 35, 759-74
26702834   Curated Info

4

Mertins P, et al. (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol Cell Proteomics 13, 1690-704
24719451   Curated Info

5

Gnad F, et al. (2013) Systems-wide Analysis of K-Ras, Cdc42, and PAK4 Signaling by Quantitative Phosphoproteomics. Mol Cell Proteomics 12, 2070-80
23608596   Curated Info

6

Wilson-Grady JT, Haas W, Gygi SP (2013) Quantitative comparison of the fasted and re-fed mouse liver phosphoproteomes using lower pH reductive dimethylation. Methods 61, 277-86
23567750   Curated Info

7

Lundby A, et al. (2013) In vivo phosphoproteomics analysis reveals the cardiac targets of β-adrenergic receptor signaling. Sci Signal 6, rs11
23737553   Curated Info

8

Wu X, et al. (2012) Investigation of receptor interacting protein (RIP3)-dependent protein phosphorylation by quantitative phosphoproteomics. Mol Cell Proteomics 11, 1640-51
22942356   Curated Info

9

Goswami T, et al. (2012) Comparative phosphoproteomic analysis of neonatal and adult murine brain. Proteomics 12, 2185-9
22807455   Curated Info

10

Hsu PP, et al. (2011) The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332, 1317-22
21659604   Curated Info

11

Navarro MN, et al. (2011) Phosphoproteomic analysis reveals an intrinsic pathway for the regulation of histone deacetylase 7 that controls the function of cytotoxic T lymphocytes. Nat Immunol 12, 352-61
21399638   Curated Info

12

Manes NP, et al. (2011) Discovery of mouse spleen signaling responses to anthrax using label-free quantitative phosphoproteomics via mass spectrometry. Mol Cell Proteomics 10, M110.000927
21189417   Curated Info

13

Huttlin EL, et al. (2010) A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 143, 1174-89
21183079   Curated Info

14

Zhou J (2010) CST Curation Set: 9670; Year: 2010; Biosample/Treatment: cell line, ES J1/untreated; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: RXXp[ST] Antibodies Used to Purify Peptides prior to LCMS: Phospho-(Ser/Thr) PKD Substrate Antibody Cat#: 4381, PTMScan(R) Phospho-PKD Substrate Motif (LXRXXpS/pT) Immunoaffinity Beads Cat#: 1986
Curated Info

15

Rinschen MM, et al. (2010) Quantitative phosphoproteomic analysis reveals vasopressin V2-receptor-dependent signaling pathways in renal collecting duct cells. Proc Natl Acad Sci U S A 107, 3882-7
20139300   Curated Info

16

Zagórska A, et al. (2010) New roles for the LKB1-NUAK pathway in controlling myosin phosphatase complexes and cell adhesion. Sci Signal 3, ra25
20354225   Curated Info

17

Guo A (2009) CST Curation Set: 8485; Year: 2009; Biosample/Treatment: tissue, liver/untreated; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: RXXp[ST]
Curated Info

18

Zanivan S, et al. (2008) Solid tumor proteome and phosphoproteome analysis by high resolution mass spectrometry. J Proteome Res 7, 5314-26
19367708   Curated Info

19

Pan C, Gnad F, Olsen JV, Mann M (2008) Quantitative phosphoproteome analysis of a mouse liver cell line reveals specificity of phosphatase inhibitors. Proteomics 8, 4534-46
18846507   Curated Info

20

Villén J, Beausoleil SA, Gerber SA, Gygi SP (2007) Large-scale phosphorylation analysis of mouse liver. Proc Natl Acad Sci U S A 104, 1488-93
17242355   Curated Info