Ser116
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.5.9.3
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser116  -  hnRNP K (mouse)

Site Information
EEGLQLPsPtAtsQL   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 452369

In vivo Characterization
Methods used to characterize site in vivo:
2D analysis ( 2 ) , immunoprecipitation ( 14 ) , mass spectrometry ( 1 , 2 , 3 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 ) , mutation of modification site ( 14 ) , phospho-antibody ( 14 ) , western blotting ( 2 , 14 )
Disease tissue studied:
anthrax infection ( 12 )
Relevant cell line - cell type - tissue:
'3T3-L1, differentiated' (adipocyte) ( 5 , 7 ) , 'brain, cerebral cortex' ( 17 ) , 'brain, embryonic' ( 19 ) , BaF3 ('B lymphocyte, precursor') [JAK3 (human), transfection] ( 1 ) , brain ( 15 ) , C2C12 (myoblast) ( 18 ) , heart ( 8 ) , HEK293T (epithelial) ( 2 ) , HeLa (cervical) ( 2 ) , J774 (macrophage) ( 14 ) , liver ( 3 , 10 , 13 ) , liver [leptin (mouse), homozygous knockout] ( 10 ) , macrophage-peritoneum [MPRIP (mouse), homozygous knockout] ( 9 ) , MEF (fibroblast) [TSC2 (mouse), homozygous knockout] ( 11 ) , mpkCCD (renal) ( 16 ) , pancreas ( 13 ) , RAW 264.7 (macrophage) ( 6 ) , spleen ( 12 ) , testis ( 13 )

Upstream Regulation
Treatments:
insulin ( 7 ) , LPS ( 14 ) , LY294002 ( 7 )

Downstream Regulation
Effects of modification on hnRNP K:
intracellular localization ( 14 )

References 

1

Degryse S, et al. (2017) Mutant JAK3 phosphoproteomic profiling predicts synergism between JAK3 inhibitors and MEK/BCL2 inhibitors for the treatment of T-cell acute lymphoblastic leukemia. Leukemia
28852199   Curated Info

2

Kim HJ, et al. (2017) Heterogeneous nuclear ribonucleoprotein K inhibits heat shock-induced transcriptional activity of heat shock factor 1. J Biol Chem 292, 12801-12812
28592492   Curated Info

3

Robles MS, Humphrey SJ, Mann M (2017) Phosphorylation Is a Central Mechanism for Circadian Control of Metabolism and Physiology. Cell Metab 25, 118-127
27818261   Curated Info

4

Sacco F, et al. (2016) Glucose-regulated and drug-perturbed phosphoproteome reveals molecular mechanisms controlling insulin secretion. Nat Commun 7, 13250
27841257   Curated Info

5

Parker BL, et al. (2015) Targeted phosphoproteomics of insulin signaling using data-independent acquisition mass spectrometry. Sci Signal 8, rs6
26060331   Curated Info

6

Pinto SM, et al. (2015) Quantitative phosphoproteomic analysis of IL-33-mediated signaling. Proteomics 15, 532-44
25367039   Curated Info

7

Humphrey SJ, et al. (2013) Dynamic Adipocyte Phosphoproteome Reveals that Akt Directly Regulates mTORC2. Cell Metab 17, 1009-20
23684622   Curated Info

8

Lundby A, et al. (2013) In vivo phosphoproteomics analysis reveals the cardiac targets of β-adrenergic receptor signaling. Sci Signal 6, rs11
23737553   Curated Info

9

Wu X, et al. (2012) Investigation of receptor interacting protein (RIP3)-dependent protein phosphorylation by quantitative phosphoproteomics. Mol Cell Proteomics 11, 1640-51
22942356   Curated Info

10

Grimsrud PA, et al. (2012) A quantitative map of the liver mitochondrial phosphoproteome reveals posttranslational control of ketogenesis. Cell Metab 16, 672-83
23140645   Curated Info

11

Yu Y, et al. (2011) Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science 332, 1322-6
21659605   Curated Info

12

Manes NP, et al. (2011) Discovery of mouse spleen signaling responses to anthrax using label-free quantitative phosphoproteomics via mass spectrometry. Mol Cell Proteomics 10, M110.000927
21189417   Curated Info

13

Huttlin EL, et al. (2010) A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 143, 1174-89
21183079   Curated Info

14

Kimura Y, et al. (2010) Characterization of multiple alternative forms of heterogeneous nuclear ribonucleoprotein K by phosphate-affinity electrophoresis. Proteomics 10, 3884-95
20960454   Curated Info

15

Wiśniewski JR, et al. (2010) Brain phosphoproteome obtained by a FASP-based method reveals plasma membrane protein topology. J Proteome Res 9, 3280-9
20415495   Curated Info

16

Rinschen MM, et al. (2010) Quantitative phosphoproteomic analysis reveals vasopressin V2-receptor-dependent signaling pathways in renal collecting duct cells. Proc Natl Acad Sci U S A 107, 3882-7
20139300   Curated Info

17

Tweedie-Cullen RY, Reck JM, Mansuy IM (2009) Comprehensive mapping of post-translational modifications on synaptic, nuclear, and histone proteins in the adult mouse brain. J Proteome Res 8, 4966-82
19737024   Curated Info

18

Kim BG, et al. (2009) 'Two-stage double-technique hybrid (TSDTH)' identification strategy for the analysis of BMP2-induced transdifferentiation of premyoblast C2C12 cells to osteoblast. J Proteome Res 8, 4441-54
19655815   Curated Info

19

Guo A (2007) CST Curation Set: 2677; Year: 2007; Biosample/Treatment: tissue, brain/-; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[ST]Q Antibodies Used to Purify Peptides prior to LCMS: Phospho-(Ser/Thr) ATM/ATR Substrate Antibody Cat#: 2851
Curated Info