Ser1859
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.7.1.1
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser1859  -  CAD (mouse)

Site Information
PPRIHRAsDPGLPAE   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 451247

In vivo Characterization
Methods used to characterize site in vivo:
mass spectrometry ( 3 , 4 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 ) , phospho-antibody ( 1 , 2 ) , western blotting ( 1 , 2 )
Disease tissue studied:
anthrax infection ( 24 ) , leukemia ( 17 ) , acute myelogenous leukemia ( 17 ) , liver cancer ( 2 ) , hepatocellular carcinoma ( 2 ) , neuroblastoma ( 22 ) , melanoma skin cancer ( 43 )
Relevant cell line - cell type - tissue:
'3T3-L1, differentiated' (adipocyte) ( 6 , 8 , 13 ) , 'brain, embryonic' ( 35 , 41 , 42 ) , 32Dcl3 (myeloid) [FLT3 (mouse), transfection, chimera with human FLT3-ITD mutant (corresponding to wild type P36888 ( 38 ) , 32Dcl3 (myeloid) ( 38 ) , BaF3 ('B lymphocyte, precursor') [JAK3 (human), transfection] ( 3 ) , blood ( 17 ) , brain ( 25 , 27 , 34 ) , C2C12 (myoblast) ( 1 , 19 ) , ES-J1 (stem) ( 33 ) , fibroblast-lung ( 28 , 29 , 30 , 31 , 32 ) , heart ( 25 ) , Hepa 1-6 (epithelial) ( 2 , 44 ) , HepG2 (hepatic) ( 2 ) , HL-1 (myocyte) [Akt1 (mouse), knockdown, stable lentiviral expression of Akt1 shRNA] ( 10 ) , HL-1 (myocyte) [Akt2 (mouse), knockdown, stable lentiviral expression of Akt2 shRNA] ( 10 ) , HL-1 (myocyte) ( 10 ) , Huh7 (hepatic) ( 2 ) , kidney ( 25 ) , liver ( 2 , 4 , 12 , 16 , 36 , 39 , 40 , 45 ) , liver [leptin (mouse), homozygous knockout] ( 16 ) , lung ( 25 ) , macrophage-bone marrow ( 26 ) , macrophage-bone marrow [DUSP1 (mouse), homozygous knockout] ( 26 ) , MC3T3-E1 (preosteoblast) ( 7 ) , MEF (fibroblast) [p53 (mouse), homozygous knockout] ( 20 ) , MEF (fibroblast) [Raptor (mouse), knockdown] ( 15 ) , MEF (fibroblast) [RICTOR (mouse), knockdown] ( 15 ) , MEF (fibroblast) [TSC2 (mouse), homozygous knockout] ( 21 ) , MEF (fibroblast) ( 2 , 14 , 15 , 21 ) , MHCC97H (hepatic) ( 2 ) , mpkCCD (renal) ( 37 ) , N1E-115 (neuron) ( 22 ) , pancreas ( 25 ) , PC-12 (chromaffin) [TrkA (rat), transfection] ( 18 ) , PC-12 (chromaffin) ( 18 ) , RAW 264.7 (macrophage) ( 9 ) , skin [mGluR1 (mouse), transgenic, TG mutant mice] ( 43 ) , spleen ( 24 , 25 ) , stromal ( 11 ) , T lymphocyte-spleen ( 23 ) , testis ( 25 )

Upstream Regulation
Regulatory protein:
CTNNB1 (human) ( 2 ) , FLT3 (mouse) ( 38 ) , p70S6K (human) ( 2 ) , Raptor (mouse) ( 15 ) , RICTOR (mouse) ( 15 ) , TSC2 (human) ( 2 )
Putative in vivo kinases:
Akt2 (human) ( 2 )
Treatments:
CCT128930 ( 2 ) , insulin ( 1 ) , light ( 1 ) , LPS ( 26 ) , PDGF ( 18 ) , Pri-724 ( 2 ) , refeeding ( 12 ) , siRNA ( 2 )

Downstream Regulation
Effects of modification on biological processes:
apoptosis, inhibited ( 2 ) , carcinogenesis, induced ( 2 ) , cell growth, induced ( 2 ) , cell motility, induced ( 2 )

References 

1

Kawamura G, et al. (2023) Optogenetic decoding of Akt2-regulated metabolic signaling pathways in skeletal muscle cells using transomics analysis. Sci Signal 16, eabn0782
36809024   Curated Info

2

Liu F, et al. (2022) Oncogenic β-catenin stimulation of AKT2-CAD-mediated pyrimidine synthesis is targetable vulnerability in liver cancer. Proc Natl Acad Sci U S A 119, e2202157119
36122209   Curated Info

3

Degryse S, et al. (2017) Mutant JAK3 phosphoproteomic profiling predicts synergism between JAK3 inhibitors and MEK/BCL2 inhibitors for the treatment of T-cell acute lymphoblastic leukemia. Leukemia 32
28852199   Curated Info

4

Robles MS, Humphrey SJ, Mann M (2017) Phosphorylation Is a Central Mechanism for Circadian Control of Metabolism and Physiology. Cell Metab 25, 118-127
27818261   Curated Info

5

Sacco F, et al. (2016) Glucose-regulated and drug-perturbed phosphoproteome reveals molecular mechanisms controlling insulin secretion. Nat Commun 7, 13250
27841257   Curated Info

6

Minard AY, et al. (2016) mTORC1 Is a Major Regulatory Node in the FGF21 Signaling Network in Adipocytes. Cell Rep 17, 29-36
27681418   Curated Info

7

Williams GR, et al. (2016) Exploring G protein-coupled receptor signaling networks using SILAC-based phosphoproteomics. Methods 92, 36-50
26160508   Curated Info

8

Parker BL, et al. (2015) Targeted phosphoproteomics of insulin signaling using data-independent acquisition mass spectrometry. Sci Signal 8, rs6
26060331   Curated Info

9

Pinto SM, et al. (2015) Quantitative phosphoproteomic analysis of IL-33-mediated signaling. Proteomics 15, 532-44
25367039   Curated Info

10

Reinartz M, Raupach A, Kaisers W, Gödecke A (2014) AKT1 and AKT2 induce distinct phosphorylation patterns in HL-1 cardiac myocytes. J Proteome Res 13, 4232-45
25162660   Curated Info

11

Mertins P, et al. (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol Cell Proteomics 13, 1690-704
24719451   Curated Info

12

Wilson-Grady JT, Haas W, Gygi SP (2013) Quantitative comparison of the fasted and re-fed mouse liver phosphoproteomes using lower pH reductive dimethylation. Methods 61, 277-86
23567750   Curated Info

13

Humphrey SJ, et al. (2013) Dynamic Adipocyte Phosphoproteome Reveals that Akt Directly Regulates mTORC2. Cell Metab 17, 1009-20
23684622   Curated Info

14

Ben-Sahra I, Howell JJ, Asara JM, Manning BD (2013) Stimulation of de novo pyrimidine synthesis by growth signaling through mTOR and S6K1. Science 339, 1323-8
23429703   Curated Info

15

Robitaille AM, et al. (2013) Quantitative phosphoproteomics reveal mTORC1 activates de novo pyrimidine synthesis. Science 339, 1320-3
23429704   Curated Info

16

Grimsrud PA, et al. (2012) A quantitative map of the liver mitochondrial phosphoproteome reveals posttranslational control of ketogenesis. Cell Metab 16, 672-83
23140645   Curated Info

17

Trost M, et al. (2012) Posttranslational regulation of self-renewal capacity: insights from proteome and phosphoproteome analyses of stem cell leukemia. Blood 120, e17-27
22802335   Curated Info

18

Biarc J, Chalkley RJ, Burlingame AL, Bradshaw RA (2012) The induction of serine/threonine protein phosphorylations by a PDGFR/TrkA chimera in stably transfected PC12 cells. Mol Cell Proteomics 11, 15-30
22027198   Curated Info

19

Knight JD, et al. (2012) A novel whole-cell lysate kinase assay identifies substrates of the p38 MAPK in differentiating myoblasts. Skelet Muscle 2, 5
22394512   Curated Info

20

Hsu PP, et al. (2011) The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332, 1317-22
21659604   Curated Info

21

Yu Y, et al. (2011) Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science 332, 1322-6
21659605   Curated Info

22

Wang Y, et al. (2011) Spatial phosphoprotein profiling reveals a compartmentalized extracellular signal-regulated kinase switch governing neurite growth and retraction. J Biol Chem 286, 18190-201
21454597   Curated Info

23

Navarro MN, et al. (2011) Phosphoproteomic analysis reveals an intrinsic pathway for the regulation of histone deacetylase 7 that controls the function of cytotoxic T lymphocytes. Nat Immunol 12, 352-61
21399638   Curated Info

24

Manes NP, et al. (2011) Discovery of mouse spleen signaling responses to anthrax using label-free quantitative phosphoproteomics via mass spectrometry. Mol Cell Proteomics 10, M110.000927
21189417   Curated Info

25

Huttlin EL, et al. (2010) A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 143, 1174-89
21183079   Curated Info

26

Weintz G, et al. (2010) The phosphoproteome of toll-like receptor-activated macrophages. Mol Syst Biol 6, 371
20531401   Curated Info

27

Wiśniewski JR, et al. (2010) Brain phosphoproteome obtained by a FASP-based method reveals plasma membrane protein topology. J Proteome Res 9, 3280-9
20415495   Curated Info

28

Guo A (2010) CST Curation Set: 9813; Year: 2010; Biosample/Treatment: cell line, mouse lung fibroblasts/untreated; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: RXXp[ST]
Curated Info

29

Guo A (2010) CST Curation Set: 9810; Year: 2010; Biosample/Treatment: cell line, mouse lung fibroblasts/untreated; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: RXXp[ST]
Curated Info

30

Guo A (2010) CST Curation Set: 9809; Year: 2010; Biosample/Treatment: cell line, mouse lung fibroblasts/untreated; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: RXXp[ST]
Curated Info

31

Guo A (2010) CST Curation Set: 9811; Year: 2010; Biosample/Treatment: cell line, mouse lung fibroblasts/untreated; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: RXXp[ST]
Curated Info

32

Guo A (2010) CST Curation Set: 9812; Year: 2010; Biosample/Treatment: cell line, mouse lung fibroblasts/untreated; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: RXXp[ST]
Curated Info

33

Zhou J (2010) CST Curation Set: 9676; Year: 2010; Biosample/Treatment: cell line, ES J1/untreated; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: RRXp[ST] Antibodies Used to Purify Peptides prior to LCMS: Phospho-PKA Substrate (RRXS/T) (100G7) Rabbit mAb Cat#: 9624, PTMScan(R) Phospho-PKA Substrate Motif (K/RK/RXS*/T*) Immunoaffinity Beads Cat#: 1984
Curated Info

34

Zhou J (2010) CST Curation Set: 9266; Year: 2010; Biosample/Treatment: tissue, brain/untreated; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: (F/Y)XpS
Curated Info

35

Zhou J (2010) CST Curation Set: 9267; Year: 2010; Biosample/Treatment: tissue, brain/untreated; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: (F/Y)XpS
Curated Info

36

Zhou J (2010) CST Curation Set: 9269; Year: 2010; Biosample/Treatment: tissue, liver/untreated; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: (F/Y)XpS
Curated Info

37

Rinschen MM, et al. (2010) Quantitative phosphoproteomic analysis reveals vasopressin V2-receptor-dependent signaling pathways in renal collecting duct cells. Proc Natl Acad Sci U S A 107, 3882-7
20139300   Curated Info

38

Choudhary C, et al. (2009) Mislocalized activation of oncogenic RTKs switches downstream signaling outcomes. Mol Cell 36, 326-39
19854140   Curated Info

39

Zhou J (2009) CST Curation Set: 7426; Year: 2009; Biosample/Treatment: tissue, liver/untreated; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: HXXp[ST]
Curated Info

40

Zhou J (2009) CST Curation Set: 7425; Year: 2009; Biosample/Treatment: tissue, liver/untreated; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: HXXp[ST]
Curated Info

41

Zhou J (2009) CST Curation Set: 7412; Year: 2009; Biosample/Treatment: tissue, brain/untreated; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: HXXp[ST]
Curated Info

42

Zhou J (2009) CST Curation Set: 7411; Year: 2009; Biosample/Treatment: tissue, brain/untreated; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: HXXp[ST]
Curated Info

43

Zanivan S, et al. (2008) Solid tumor proteome and phosphoproteome analysis by high resolution mass spectrometry. J Proteome Res 7, 5314-26
19367708   Curated Info

44

Pan C, Gnad F, Olsen JV, Mann M (2008) Quantitative phosphoproteome analysis of a mouse liver cell line reveals specificity of phosphatase inhibitors. Proteomics 8, 4534-46
18846507   Curated Info

45

Villén J, Beausoleil SA, Gerber SA, Gygi SP (2007) Large-scale phosphorylation analysis of mouse liver. Proc Natl Acad Sci U S A 104, 1488-93
17242355   Curated Info