Ser46
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.5.9.3
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser46  -  p53 (human)

Site Information
AMDDLMLsPDDIEQW   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 447536

In vivo Characterization
Methods used to characterize site in vivo:
[32P] ATP in vitro ( 101 ) , immunoprecipitation ( 4 , 5 , 10 , 17 , 28 , 42 , 94 ) , mass spectrometry ( 15 , 36 , 98 ) , microscopy-colocalization with upstream kinase ( 5 , 55 ) , modification-specific antibody ( 11 , 33 , 86 ) , mutation of modification site ( 6 , 9 , 10 , 14 , 17 , 24 , 28 , 56 , 60 , 64 , 65 , 67 , 70 , 71 , 74 , 77 , 83 , 86 , 91 , 95 , 97 , 100 , 101 ) , phospho-antibody ( 1 , 5 , 6 , 10 , 11 , 13 , 14 , 16 , 17 , 18 , 19 , 21 , 22 , 23 , 24 , 27 , 28 , 30 , 32 , 33 , 34 , 37 , 39 , 40 , 41 , 42 , 45 , 50 , 51 , 52 , 53 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64 , 67 , 69 , 70 , 71 , 72 , 73 , 74 , 75 , 76 , 77 , 78 , 79 , 80 , 81 , 82 , 83 , 84 , 85 , 86 , 87 , 88 , 89 , 90 , 91 , 92 , 93 , 94 , 95 , 97 , 99 , 100 , 101 ) , western blotting ( 1 , 4 , 5 , 6 , 10 , 11 , 13 , 14 , 16 , 17 , 18 , 19 , 21 , 22 , 23 , 24 , 27 , 28 , 30 , 32 , 33 , 34 , 37 , 39 , 40 , 41 , 42 , 45 , 50 , 51 , 52 , 53 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64 , 67 , 69 , 70 , 71 , 76 , 79 , 80 , 83 , 85 , 86 , 87 , 89 , 92 , 95 , 99 )
Disease tissue studied:
ataxia-telangiectasia ( 62 , 80 , 94 ) , adrenal cancer ( 27 ) , bone cancer ( 5 , 6 , 14 , 17 , 21 , 28 , 30 , 39 , 50 , 53 , 56 , 58 , 60 , 70 ) , brain cancer ( 34 , 83 ) , glioblastoma ( 34 , 83 ) , glioma ( 34 , 83 ) , breast cancer ( 39 , 62 , 70 , 79 , 95 ) , colorectal cancer ( 19 , 52 , 56 , 60 , 61 , 67 , 70 , 86 ) , colorectal carcinoma ( 19 , 52 , 56 , 60 , 61 , 67 , 70 , 86 ) , eye cancer ( 22 , 33 ) , retinoblastoma ( 33 ) , leukemia ( 41 , 59 , 70 ) , acute lymphocytic leukemia ( 41 ) , acute myelogenous leukemia ( 59 ) , T cell leukemia ( 70 ) , liver cancer ( 10 , 13 , 28 , 37 , 50 , 62 , 63 ) , hepatocellular carcinoma ( 13 , 28 ) , lung cancer ( 5 , 14 , 16 , 17 , 28 , 56 , 63 , 64 , 67 , 69 , 71 , 85 , 86 , 89 , 95 , 99 ) , mesothelioma ( 85 ) , non-small cell lung cancer ( 5 , 14 , 16 , 17 , 28 , 56 , 64 , 67 , 69 , 85 , 86 , 95 , 99 ) , non-small cell lung adenocarcinoma ( 17 ) , lymphoma ( 19 ) , Burkitt's lymphoma ( 19 ) , neuroblastoma ( 24 , 57 , 94 ) , oropharyngeal cancer ( 71 ) , squamous cell carcinoma of the oropharynx ( 71 ) , multiple myeloma ( 1 ) , prostate cancer ( 59 ) , fibrosarcoma of soft tissue ( 27 )
Relevant cell line - cell type - tissue:
'stem, embryonic' ( 78 ) , 293 (epithelial) [AT1 (human), transfection, AT1R stable transfected HEK293] ( 36 ) , 293 (epithelial) ( 10 , 11 , 61 , 67 , 82 , 95 ) , A375MM (melanocyte) ( 18 ) , A549 (pulmonary) ( 17 , 63 , 71 , 86 , 89 , 97 , 99 , 100 ) , AT1ABR (lymphoblastoid) ( 80 ) , AT24RM (lymphoblastoid) ( 94 ) , AT2KY ( 39 ) , brain ( 24 ) , BT (epithelial) ( 80 , 94 ) , C3ABR (lymphoblastoid) ( 80 , 94 ) , COS (fibroblast) ( 65 , 99 ) , E.coli (bacterial) ( 9 , 31 ) , epithelial-corneal ( 76 ) , Focus (hepatic) ( 13 ) , glial ( 90 ) , GM01526 (lymphoblast) ( 94 ) , GM02052 (fibroblast) ( 62 ) , GM02254 (lymphoblast) ( 94 ) , GM03491 (fibroblast) ( 62 ) , HCT116 (intestinal) [p53 (human)] ( 70 ) , HCT116 (intestinal) ( 52 , 56 , 60 , 61 , 81 , 86 ) , HEK293T (epithelial) ( 5 , 15 , 40 , 60 , 70 , 82 ) , HeLa (cervical) [p53 (human), transfection] ( 42 ) , HeLa (cervical) ( 23 , 55 , 99 ) , HepG2 (hepatic) ( 10 , 37 , 50 , 62 , 63 ) , HT1080 (fibroblast) ( 27 ) , Huh7 (hepatic) ( 13 ) , IMR-90 (fibroblast) ( 93 ) , keratinocyte-skin ( 51 ) , L3 (lymphoblastoid) ( 94 ) , L929 (fibroblast) ( 72 ) , leukocyte-blood ( 59 ) , liver ( 63 ) , LNCaP (prostate cell) ( 59 ) , M059J (glial) ( 83 ) , MCF-7 (breast cell) ( 39 , 62 , 70 , 79 , 95 , 97 , 100 , 101 ) , MDST8 (intestinal) ( 19 ) , MEF (fibroblast) ( 4 , 28 , 86 ) , MEL202 (melanocyte) ( 22 ) , MM.1S (lymphoblast) ( 1 ) , MOLM 13 (myeloid) ( 59 ) , MOLT-4 (T lymphocyte) ( 70 ) , Mori (fibroblast) ( 97 ) , MRC5 (fibroblast) ( 86 ) , MT1 (lymphoblastoid) ( 84 ) , NALM6 (B lymphocyte) ( 41 ) , Namalwa (B lymphocyte) ( 19 ) , NCI-H1299 (pulmonary) ( 5 , 14 , 16 , 17 , 28 , 56 , 64 , 67 , 69 , 85 , 86 , 95 , 99 , 100 , 101 ) , NCI-H226 (pulmonary) ( 85 ) , NCI-H929 (B lymphocyte) ( 1 ) , NHF (fibroblast) ( 87 ) , PC-12 Adh ( 27 ) , RKO (intestinal) ( 67 , 73 , 81 ) , Saos-2 (bone cell) ( 14 , 56 , 60 , 77 , 100 ) , SF9 ( 98 ) , SH-SY5Y (neural crest) ( 24 , 57 ) , SHEP (neuron) ( 94 ) , SNU-475 (hepatic) ( 28 ) , SW480 (intestinal) ( 60 ) , TIG (fibroblast) ( 39 , 100 ) , TK6 (lymphoblastoid) ( 84 ) , U-937 (myeloid) ( 72 ) , U266 (plasma cell) ( 1 ) , U2OS (bone cell) [GR (human)] ( 74 , 75 , 77 , 88 , 91 ) , U2OS (bone cell) ( 5 , 6 , 14 , 17 , 21 , 28 , 30 , 39 , 50 , 53 , 58 , 60 , 70 ) , U87MG (glial) ( 34 , 100 ) , WERI-Rb1 (retinal) ( 33 ) , WI-38 (fibroblast) ( 62 , 92 ) , WRL 68 (epithelial) ( 13 ) , WS1 (fibroblast) ( 86 ) , Y79 (retinal) ( 33 ) , YY-8103 (hepatic) ( 13 )

Upstream Regulation
Regulatory protein:
AMPKA1 (human) ( 53 ) , AMPKA2 (human) ( 53 ) , ATM (human) ( 17 , 22 , 23 , 55 , 60 , 62 ) , ATR (human) ( 17 ) , axin 1 (human) ( 28 , 64 ) , axin 1 (mouse) ( 82 ) , CDK5 (mouse) ( 57 ) , CDK5R1 (mouse) ( 57 ) , DAXX (human) ( 64 ) , FAM189B (human) ( 13 ) , HIPK2 (human) ( 16 , 24 , 62 , 64 , 67 ) , HRas (human) ( 11 ) , Huntingtin (human) ( 24 ) , IGF1R (human) ( 51 ) , MDM2 (human) ( 50 ) , Myc (human) ( 87 ) , NBS1 (human) ( 55 ) , PIN1 (human) ( 16 ) , PKCD (human) ( 24 , 70 ) , PML (human) ( 28 ) , PML iso4 (human) ( 92 ) , PPM1D (human) ( 99 ) , PPP2CA (human) ( 19 ) , RASSF5 (human) ( 11 ) , SIAH1 (human) ( 50 ) , ZNHIT1 (human) ( 58 )
Putative in vivo kinases:
ATM (human) ( 39 ) , CDK5 (human) ( 42 ) , DYRK2 (human) ( 14 , 40 , 60 ) , HIPK2 (human) ( 39 , 47 , 62 , 67 , 69 , 82 , 95 , 96 ) , P38A (human) ( 101 ) , PKCD (human) ( 70 )
Kinases, in vitro:
ATM (human) ( 39 ) , CDK5 (human) ( 57 ) , DNAPK (human) ( 83 ) , DYRK2 (human) ( 60 ) , HIPK2 (human) ( 95 ) , JNK2 (human) ( 12 ) , P38A (human) ( 31 , 101 ) , PKCD (human) ( 70 )
Treatments:
4-HT ( 77 ) , actinomycin_D ( 30 ) , adriamycin ( 2 , 14 , 21 , 28 , 37 , 39 , 40 , 41 , 48 , 60 , 61 , 70 , 80 , 81 , 86 , 88 , 94 , 100 ) , asbestos ( 89 ) , bortezomib ( 1 ) , caffeine ( 22 , 24 , 62 ) , cAMP_analog ( 90 ) , Cdk2/5_inhibitor ( 42 ) , celecoxib ( 23 ) , cell_detachment ( 69 ) , cisplatin ( 25 , 58 , 70 , 73 ) , colforsin ( 41 ) , depsipeptide ( 33 ) , desferoxamine ( 37 ) , doxycycline ( 56 ) , etoposide ( 30 , 70 , 74 , 81 ) , glucose_starvation ( 53 ) , heat_shock ( 47 , 90 ) , hypoxia ( 21 , 37 ) , IBMX ( 41 ) , idarubicin ( 59 ) , imatinib ( 10 ) , ionizing_radiation ( 10 , 33 , 39 , 59 , 62 , 83 , 86 , 94 , 97 , 100 ) , KU-55933 ( 22 , 24 , 55 ) , lenalidomide ( 19 ) , LLnL ( 91 ) , LY294002 ( 63 ) , MG132 ( 37 , 57 , 90 ) , mitomycin_C ( 57 ) , nocodazole ( 86 ) , nutlin-3 ( 22 ) , okadaic_acid ( 42 , 98 ) , PALA ( 86 ) , PD169316 ( 94 ) , RITA ( 22 ) , rottlerin ( 24 , 70 ) , SB203580 ( 4 , 23 , 34 , 99 ) , seliciclib ( 57 , 79 ) , serum_starvation ( 45 ) , siRNA ( 14 , 50 , 57 , 62 , 67 , 70 ) , SNP ( 57 ) , staurosporine ( 45 ) , Tat ( 34 ) , taxol ( 18 , 86 ) , TMZ ( 84 ) , topotecan ( 22 ) , UV ( 2 , 28 , 39 , 50 , 51 , 56 , 60 , 67 , 72 , 76 , 78 , 86 , 91 , 93 , 95 , 99 , 100 , 101 ) , valproic_acid ( 33 ) , virus infection ( 34 , 55 , 85 , 93 ) , wortmannin ( 23 , 57 , 94 )

Downstream Regulation
Effects of modification on p53:
acetylation ( 96 ) , activity, induced ( 70 , 81 , 92 ) , intracellular localization ( 14 , 28 ) , molecular association, regulation ( 4 , 9 , 12 , 14 , 17 , 30 , 31 , 56 , 66 , 91 ) , protein degradation ( 19 ) , protein stabilization ( 31 , 92 )
Effects of modification on biological processes:
apoptosis, altered ( 37 , 40 , 81 , 82 ) , apoptosis, induced ( 4 , 6 , 10 , 13 , 24 , 28 , 30 , 48 , 51 , 56 , 60 , 61 , 65 , 70 , 71 , 74 , 77 , 95 , 100 , 101 ) , carcinogenesis, inhibited ( 22 ) , cell growth, altered ( 51 , 71 ) , cell growth, inhibited ( 92 ) , DNA repair, induced ( 17 ) , transcription, altered ( 67 , 71 , 73 , 100 ) , transcription, induced ( 4 , 14 , 21 , 28 , 30 , 48 , 54 , 56 , 64 , 82 , 92 , 96 )
Induce interaction with:
BAX (human) ( 9 ) , CBP (human) ( 31 ) , DNA ( 14 , 30 , 56 ) , GLS2 (mouse) ( 4 ) , GTF2H1 (human) ( 12 , 54 , 66 ) , PIN1 (human) ( 9 , 56 , 91 ) , RPA1 (human) ( 17 ) , SCO2 (mouse) ( 4 ) , TFB1M (human) ( 66 )
Inhibit interaction with:
PPP1R13L (human) ( 56 )

Disease / Diagnostics Relevance
Relevant diseases:
Huntington's disease ( 24 )

References 

1

Shah SP, Nooka AK, Lonial S, Boise LH (2017) TG02 inhibits proteasome inhibitor-induced HSF1 serine 326 phosphorylation and heat shock response in multiple myeloma. Blood Adv 1, 1848-1853
29296831   Curated Info

2

Verdina A, et al. (2017) HIPK2-T566 autophosphorylation diversely contributes to UV- and doxorubicin-induced HIPK2 activation. Oncotarget 8, 16744-16754
28060750   Curated Info

3

Choi OR, Ryu MS, Lim IK (2016) Shifting p53-induced senescence to cell death by TIS21(/BTG2/Pc3) gene through posttranslational modification of p53 protein. Cell Signal 28, 1172-85
27208501   Curated Info

4

Jennis M, et al. (2016) An African-specific polymorphism in the TP53 gene impairs p53 tumor suppressor function in a mouse model. Genes Dev 30, 918-30
27034505   Curated Info

5

Conrad E, et al. (2016) HIPK2 restricts SIRT1 activity upon severe DNA damage by a phosphorylation-controlled mechanism. Cell Death Differ 23, 110-22
26113041   Curated Info

6

Ohno S, et al. (2015) ELAS1-mediated inhibition of the cyclin G1-B'γ interaction promotes cancer cell apoptosis via stabilization and activation of p53. Oncogene 34, 5983-96
25915850   Curated Info

7

Phang BH, et al. (2015) Amino-terminal p53 mutations lead to expression of apoptosis proficient p47 and prognosticate better survival, but predispose to tumorigenesis. Proc Natl Acad Sci U S A 112, E6349-58
26578795   Curated Info

8

Agarwal S, Bell CM, Rothbart SB, Moran RG (2015) AMP-activated Protein Kinase (AMPK) Control of mTORC1 Is p53- and TSC2-independent in Pemetrexed-treated Carcinoma Cells. J Biol Chem 290, 27473-86
26391395   Curated Info

9

Follis AV, et al. (2015) Pin1-Induced Proline Isomerization in Cytosolic p53 Mediates BAX Activation and Apoptosis. Mol Cell 59, 677-84
26236013   Curated Info

10

Reuven N, et al. (2015) The Tyrosine Kinase c-Abl Promotes Homeodomain-interacting Protein Kinase 2 (HIPK2) Accumulation and Activation in Response to DNA Damage. J Biol Chem 290, 16478-88
25944899   Curated Info

11

Donninger H, et al. (2015) NORE1A is a Ras senescence effector that controls the apoptotic/senescent balance of p53 via HIPK2. J Cell Biol 208, 777-89
25778922   Curated Info

12

Okuda M, Nishimura Y (2015) Real-time and simultaneous monitoring of the phosphorylation and enhanced interaction of p53 and XPC acidic domains with the TFIIH p62 subunit. Oncogenesis 4, e150
26029824   Curated Info

13

Zhang H, et al. (2014) Upregulation of the putative oncogene COTE1 contributes to human hepatocarcinogenesis through modulation of WWOX signaling. Int J Oncol 45, 719-31
24899407   Curated Info

14

Taira N, et al. (2014) Induction of amphiregulin by p53 promotes apoptosis via control of microRNA biogenesis in response to DNA damage. Proc Natl Acad Sci U S A 111, 717-22
24379358   Curated Info

15

Polonio-Vallon T, Kirkpatrick J, Krijgsveld J, Hofmann TG (2014) Src kinase modulates the apoptotic p53 pathway by altering HIPK2 localization. Cell Cycle 13, 115-25
24196445   Curated Info

16

Bitomsky N, et al. (2013) Autophosphorylation and Pin1 binding coordinate DNA damage-induced HIPK2 activation and cell death. Proc Natl Acad Sci U S A 110, E4203-12
24145406   Curated Info

17

Serrano MA, et al. (2013) DNA-PK, ATM and ATR collaboratively regulate p53-RPA interaction to facilitate homologous recombination DNA repair. Oncogene 32, 2452-62
22797063   Curated Info

18

Matin RN, et al. (2013) p63 is an alternative p53 repressor in melanoma that confers chemoresistance and a poor prognosis. J Exp Med 210, 581-603
23420876   Curated Info

19

Wei S, et al. (2013) Lenalidomide promotes p53 degradation by inhibiting MDM2 auto-ubiquitination in myelodysplastic syndrome with chromosome 5q deletion. Oncogene 32, 1110-20
22525275   Curated Info

20

Chan C, et al. (2013) Altered Binding Site Selection of p53 Transcription Cassettes by Hepatitis B Virus X Protein. Mol Cell Biol 33, 485-97
23149944   Curated Info

21

Pérez M, et al. (2012) Mutual regulation between SIAH2 and DYRK2 controls hypoxic and genotoxic signaling pathways. J Mol Cell Biol 4, 316-30
22878263   Curated Info

22

de Lange J, et al. (2012) Synergistic growth inhibition based on small-molecule p53 activation as treatment for intraocular melanoma. Oncogene 31, 1105-16
21765463   Curated Info

23

Saha B, et al. (2012) Restoration of tumor suppressor p53 by differentially regulating pro- and anti-p53 networks in HPV-18-infected cervical cancer cells. Oncogene 31, 173-86
21765464   Curated Info

24

Grison A, et al. (2011) Ser46 phosphorylation and prolyl-isomerase Pin1-mediated isomerization of p53 are key events in p53-dependent apoptosis induced by mutant huntingtin. Proc Natl Acad Sci U S A 108, 17979-84
22011578   Curated Info

25

Wu ZZ, Sun NK, Chao CC (2011) Knockdown of CITED2 using short-hairpin RNA sensitizes cancer cells to cisplatin through stabilization of p53 and enhancement of p53-dependent apoptosis. J Cell Physiol 226, 2415-28
21660965   Curated Info

26

Seo SK, et al. (2011) Histone deacetylase inhibitors sensitize human non-small cell lung cancer cells to ionizing radiation through acetyl p53-mediated c-myc down-regulation. J Thorac Oncol 6, 1313-9
21642861   Curated Info

27

Kim HD, Kim TS, Kim J (2011) Aberrant ribosome biogenesis activates c-Myc and ASK1 pathways resulting in p53-dependent G1 arrest. Oncogene 30, 3317-27
21383696   Curated Info

28

Li Q, et al. (2011) AXIN is an essential co-activator for the promyelocytic leukemia protein in p53 activation. Oncogene 30, 1194-204
21057547   Curated Info

29

Savelyeva I, Dobbelstein M (2011) Infection with E1B-mutant adenovirus stabilizes p53 but blocks p53 acetylation and activity through E1A. Oncogene 30, 865-75
20935676   Curated Info

30

Smeenk L, et al. (2011) Role of p53 serine 46 in p53 target gene regulation. PLoS One 6, e17574
21394211   Curated Info

31

Lee CW, et al. (2010) Graded enhancement of p53 binding to CREB-binding protein (CBP) by multisite phosphorylation. Proc Natl Acad Sci U S A 107, 19290-5
20962272   Curated Info

32

Park J, et al. (2010) Dyrk1A phosphorylates p53 and inhibits proliferation of embryonic neuronal cells. J Biol Chem 285, 31895-906
20696760   Curated Info

33

Kawano T, et al. (2010) Histone deacetylase inhibitors valproic acid and depsipeptide sensitize retinoblastoma cells to radiotherapy by increasing H2AX phosphorylation and p53 acetylation-phosphorylation. Int J Oncol 37, 787-95
20811699   Curated Info

34

Lin S, Wang XM, Nadeau PE, Mergia A (2010) HIV infection upregulates caveolin 1 expression to restrict virus production. J Virol 84, 9487-96
20610713   Curated Info

35

Puca R, Nardinocchi L, Givol D, D'Orazi G (2010) Regulation of p53 activity by HIPK2: molecular mechanisms and therapeutical implications in human cancer cells. Oncogene 29, 4378-87
20514025   Curated Info

36

Christensen GL, et al. (2010) Quantitative phosphoproteomics dissection of seven-transmembrane receptor signaling using full and biased agonists. Mol Cell Proteomics 9, 1540-53
20363803   Curated Info

37

Moehlenbrink J, Bitomsky N, Hofmann TG (2010) Hypoxia suppresses chemotherapeutic drug-induced p53 Serine 46 phosphorylation by triggering HIPK2 degradation. Cancer Lett 292, 119-24
20018442   Curated Info

38

Puca R, et al. (2010) Nox1 is involved in p53 deacetylation and suppression of its transcriptional activity and apoptosis. Free Radic Biol Med 48, 1338-46
20171273   Curated Info

39

Kodama M, et al. (2010) Requirement of ATM for rapid p53 phosphorylation at Ser46 without Ser/Thr-Gln sequences. Mol Cell Biol 30, 1620-33
20123963   Curated Info

40

Taira N, et al. (2010) ATM augments nuclear stabilization of DYRK2 by inhibiting MDM2 in the apoptotic response to DNA damage. J Biol Chem 285, 4909-19
19965871   Curated Info

41

Safa M, et al. (2010) Inhibitory role of cAMP on doxorubicin-induced apoptosis in pre-B ALL cells through dephosphorylation of p53 serine residues. Apoptosis 15, 196-203
19882354   Curated Info

42

Ajay AK, et al. (2010) Cdk5 phosphorylates non-genotoxically overexpressed p53 following inhibition of PP2A to induce cell cycle arrest/apoptosis and inhibits tumor progression. Mol Cancer 9, 204
20673369   Curated Info

43

Nishimura T, et al. (2009) Hepatitis C virus impairs p53 via persistent overexpression of 3beta-hydroxysterol Delta24-reductase. J Biol Chem 284, 36442-52
19861417   Curated Info

44

van Dieck J, et al. (2009) Posttranslational modifications affect the interaction of S100 proteins with tumor suppressor p53. J Mol Biol 394, 922-30
19819244   Curated Info

45

Fanucchi S, Veale RB (2009) Role of p53/FAK association and p53Ser46 phosphorylation in staurosporine-mediated apoptosis: wild type versus mutant p53-R175H. FEBS Lett 583, 3557-62
19857493   Curated Info

46

Yadavilli S, Chen Z, Albrecht T, Muganda PM (2009) Mechanism of diepoxybutane-induced p53 regulation in human cells. J Biochem Mol Toxicol 23, 373-86
20024960   Curated Info

47

McDonough H, et al. (2009) Stress-dependent Daxx-CHIP interaction suppresses the p53 apoptotic program. J Biol Chem 284, 20649-59
19465479   Curated Info

48

Puca R, et al. (2009) HIPK2 modulates p53 activity towards pro-apoptotic transcription. Mol Cancer 8, 85
19828042   Curated Info

49

Warnock LJ, et al. (2008) Influence of tetramerisation on site-specific post-translational modifications of p53: comparison of human and murine p53 tumor suppressor protein. Cancer Biol Ther 7, 1481-9
18769132   Curated Info

50

Winter M, et al. (2008) Control of HIPK2 stability by ubiquitin ligase Siah-1 and checkpoint kinases ATM and ATR. Nat Cell Biol 10, 812-24
18536714   Curated Info

51

Lewis DA, Yi Q, Travers JB, Spandau DF (2008) UVB-induced senescence in human keratinocytes requires a functional insulin-like growth factor-1 receptor and p53. Mol Biol Cell 19, 1346-53
18216278   Curated Info

52

Warnock LJ, Adamson R, Lynch CJ, Milner J (2008) Crosstalk between site-specific modifications on p53 and histone H3. Oncogene 27, 1639-44
17891183   Curated Info

53

Okoshi R, et al. (2008) Activation of AMP-activated protein kinase induces p53-dependent apoptotic cell death in response to energetic stress. J Biol Chem 283, 3979-87
18056705   Curated Info

54

Di Lello P, et al. (2008) p53 and TFIIEalpha share a common binding site on the Tfb1/p62 subunit of TFIIH. Proc Natl Acad Sci U S A 105, 106-11
18160537   Curated Info

55

Perfettini JL, et al. (2008) Critical involvement of the ATM-dependent DNA damage response in the apoptotic demise of HIV-1-elicited syncytia. PLoS One 3, e2458
18560558   Curated Info

56

Mantovani F, et al. (2007) The prolyl isomerase Pin1 orchestrates p53 acetylation and dissociation from the apoptosis inhibitor iASPP. Nat Struct Mol Biol 14, 912-20
17906639   Curated Info

57

Lee JH, Kim HS, Lee SJ, Kim KT (2007) Stabilization and activation of p53 induced by Cdk5 contributes to neuronal cell death. J Cell Sci 120, 2259-71
17591690   Curated Info

58

Cuadrado A, et al. (2007) A new p38 MAP kinase-regulated transcriptional coactivator that stimulates p53-dependent apoptosis. EMBO J 26, 2115-26
17380123   Curated Info

59

Irish JM, et al. (2007) Flt3 Y591 duplication and Bcl-2 overexpression are detected in acute myeloid leukemia cells with high levels of phosphorylated wild-type p53. Blood 109, 2589-96
17105820   Curated Info

60

Taira N, et al. (2007) DYRK2 is targeted to the nucleus and controls p53 via Ser46 phosphorylation in the apoptotic response to DNA damage. Mol Cell 25, 725-38
17349958   Curated Info

61

Rinaldo C, et al. (2007) MDM2-regulated degradation of HIPK2 prevents p53Ser46 phosphorylation and DNA damage-induced apoptosis. Mol Cell 25, 739-50
17349959   Curated Info

62

Dauth I, Krüger J, Hofmann TG (2007) Homeodomain-interacting protein kinase 2 is the ionizing radiation-activated p53 serine 46 kinase and is regulated by ATM. Cancer Res 67, 2274-9
17332358   Curated Info

63

Malmlöf M, Roudier E, Högberg J, Stenius U (2007) MEK-ERK-mediated phosphorylation of Mdm2 at Ser-166 in hepatocytes. Mdm2 is activated in response to inhibited Akt signaling. J Biol Chem 282, 2288-96
17107963   Curated Info

64

Li Q, et al. (2007) Daxx cooperates with the Axin/HIPK2/p53 complex to induce cell death. Cancer Res 67, 66-74
17210684   Curated Info

65

Hong Q, et al. (2007) Zfra affects TNF-mediated cell death by interacting with death domain protein TRADD and negatively regulates the activation of NF-kappaB, JNK1, p53 and WOX1 during stress response. BMC Mol Biol 8, 50
17567906   Curated Info

66

Di Lello P, et al. (2006) Structure of the Tfb1/p53 complex: Insights into the interaction between the p62/Tfb1 subunit of TFIIH and the activation domain of p53. Mol Cell 22, 731-40
16793543   Curated Info

67

Cecchinelli B, et al. (2006) Repression of the antiapoptotic molecule galectin-3 by homeodomain-interacting protein kinase 2-activated p53 is required for p53-induced apoptosis. Mol Cell Biol 26, 4746-57
16738336   Curated Info

68

Knights CD, et al. (2006) Distinct p53 acetylation cassettes differentially influence gene-expression patterns and cell fate. J Cell Biol 173, 533-44
16717128   Curated Info

69

Gresko E, et al. (2006) Autoregulatory control of the p53 response by caspase-mediated processing of HIPK2. EMBO J 25, 1883-94
16601678   Curated Info

70

Yoshida K, Liu H, Miki Y (2006) Protein kinase C delta regulates Ser46 phosphorylation of p53 tumor suppressor in the apoptotic response to DNA damage. J Biol Chem 281, 5734-40
16377624   Curated Info

71

Ichwan SJ, et al. (2006) Defect in serine 46 phosphorylation of p53 contributes to acquisition of p53 resistance in oral squamous cell carcinoma cells. Oncogene 25, 1216-24
16247456   Curated Info

72

Chang NS, et al. (2005) WOX1 is essential for tumor necrosis factor-, UV light-, staurosporine-, and p53-mediated cell death, and its tyrosine 33-phosphorylated form binds and stabilizes serine 46-phosphorylated p53. J Biol Chem 280, 43100-8
16219768   Curated Info

73

Di Stefano V, Soddu S, Sacchi A, D'Orazi G (2005) HIPK2 contributes to PCAF-mediated p53 acetylation and selective transactivation of p21Waf1 after nonapoptotic DNA damage. Oncogene 24, 5431-42
15897882   Curated Info

74

Mayo LD, et al. (2005) Phosphorylation of human p53 at serine 46 determines promoter selection and whether apoptosis is attenuated or amplified. J Biol Chem 280, 25953-9
15843377   Curated Info

75

Lu X, Nannenga B, Donehower LA (2005) PPM1D dephosphorylates Chk1 and p53 and abrogates cell cycle checkpoints. Genes Dev 19, 1162-74
15870257   Curated Info

76

Wang L, Dai W, Lu L (2005) Ultraviolet irradiation-induced K(+) channel activity involving p53 activation in corneal epithelial cells. Oncogene 24, 3020-7
15750624   Curated Info

77

Hershko T, Chaussepied M, Oren M, Ginsberg D (2005) Novel link between E2F and p53: proapoptotic cofactors of p53 are transcriptionally upregulated by E2F. Cell Death Differ 12, 377-83
15706352   Curated Info

78

Lin T, et al. (2005) p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression. Nat Cell Biol 7, 165-71
15619621   Curated Info

79

Wesierska-Gadek J, Gueorguieva M, Horky M (2005) Roscovitine-induced up-regulation of p53AIP1 protein precedes the onset of apoptosis in human MCF-7 breast cancer cells. Mol Cancer Ther 4, 113-24
15657359   Curated Info

80

Kurz EU, Douglas P, Lees-Miller SP (2004) Doxorubicin activates ATM-dependent phosphorylation of multiple downstream targets in part through the generation of reactive oxygen species. J Biol Chem 279, 53272-81
15489221   Curated Info

81

Thompson T, et al. (2004) Phosphorylation of p53 on key serines is dispensable for transcriptional activation and apoptosis. J Biol Chem 279, 53015-22
15471885   Curated Info

82

Rui Y, et al. (2004) Axin stimulates p53 functions by activation of HIPK2 kinase through multimeric complex formation. EMBO J 23, 4583-94
15526030   Curated Info

83

Komiyama S, et al. (2004) Potentiality of DNA-dependent protein kinase to phosphorylate Ser46 of human p53. Biochem Biophys Res Commun 323, 816-22
15381073   Curated Info

84

Caporali S, et al. (2004) DNA damage induced by temozolomide signals to both ATM and ATR: role of the mismatch repair system. Mol Pharmacol 66, 478-91
15322239   Curated Info

85

Ohtani S, et al. (2004) Quantitative analysis of p53-targeted gene expression and visualization of p53 transcriptional activity following intratumoral administration of adenoviral p53 in vivo. Mol Cancer Ther 3, 93-100
14749479   Curated Info

86

Saito S, et al. (2003) Phosphorylation site interdependence of human p53 post-translational modifications in response to stress. J Biol Chem 278, 37536-44
12860987   Curated Info

87

Lindström MS, Wiman KG (2003) Myc and E2F1 induce p53 through p14ARF-independent mechanisms in human fibroblasts. Oncogene 22, 4993-5005
12902982   Curated Info

88

Möller A, et al. (2003) PML is required for homeodomain-interacting protein kinase 2 (HIPK2)-mediated p53 phosphorylation and cell cycle arrest but is dispensable for the formation of HIPK domains. Cancer Res 63, 4310-4
12907596   Curated Info

89

Matsuoka M, Igisu H, Morimoto Y (2003) Phosphorylation of p53 protein in A549 human pulmonary epithelial cells exposed to asbestos fibers. Environ Health Perspect 111, 509-12
12676607   Curated Info

90

Wang C, Chen J (2003) Phosphorylation and hsp90 binding mediate heat shock stabilization of p53. J Biol Chem 278, 2066-71
12427754   Curated Info

91

Zheng H, et al. (2002) The prolyl isomerase Pin1 is a regulator of p53 in genotoxic response. Nature 419, 849-53
12397361   Curated Info

92

Bischof O, et al. (2002) Deconstructing PML-induced premature senescence. EMBO J 21, 3358-69
12093737   Curated Info

93

Bulavin DV, et al. (2002) Amplification of PPM1D in human tumors abrogates p53 tumor-suppressor activity. Nat Genet 31, 210-5
12021785   Curated Info

94

Saito S, et al. (2002) ATM mediates phosphorylation at multiple p53 sites, including Ser(46), in response to ionizing radiation. J Biol Chem 277, 12491-4
11875057   Curated Info

95

D'Orazi G, et al. (2002) Homeodomain-interacting protein kinase-2 phosphorylates p53 at Ser 46 and mediates apoptosis. Nat Cell Biol 4, 11-9
11780126   Curated Info

96

Hofmann TG, et al. (2002) Regulation of p53 activity by its interaction with homeodomain-interacting protein kinase-2. Nat Cell Biol 4, 1-10
11740489   Curated Info

97

Kishi H, et al. (2001) Osmotic shock induces G1 arrest through p53 phosphorylation at Ser33 by activated p38MAPK without phosphorylation at Ser15 and Ser20. J Biol Chem 276, 39115-22
11495913   Curated Info

98

Merrick BA, et al. (2001) Site-specific phosphorylation of human p53 protein determined by mass spectrometry. Biochemistry 40, 4053-66
11300786   Curated Info

99

Takekawa M, et al. (2000) p53-inducible wip1 phosphatase mediates a negative feedback regulation of p38 MAPK-p53 signaling in response to UV radiation. EMBO J 19, 6517-26
11101524   Curated Info

100

Oda K, et al. (2000) p53AIP1, a potential mediator of p53-dependent apoptosis, and its regulation by Ser-46-phosphorylated p53. Cell 102, 849-62
11030628   Curated Info

101

Bulavin DV, et al. (1999) Phosphorylation of human p53 by p38 kinase coordinates N-terminal phosphorylation and apoptosis in response to UV radiation. EMBO J 18, 6845-54
10581258   Curated Info