Ser392
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.5.9.3
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser392  -  p53 (human)

Site Information
FktEGPDsD______   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 447535

In vivo Characterization
Methods used to characterize site in vivo:
2D analysis ( 62 , 87 ) , flow cytometry ( 38 , 46 ) , immunoprecipitation ( 4 , 24 , 46 , 73 , 78 ) , mass spectrometry ( 3 , 6 , 9 , 11 , 17 , 26 , 34 , 35 , 55 , 83 ) , mass spectrometry (in vitro) ( 83 ) , microscopy-colocalization with upstream kinase ( 43 ) , modification-specific antibody ( 66 , 80 ) , mutation of modification site ( 4 , 7 , 16 , 21 , 22 , 24 , 44 , 46 , 60 , 66 , 76 ) , phospho-antibody ( 1 , 4 , 7 , 16 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 27 , 28 , 29 , 32 , 36 , 38 , 40 , 41 , 42 , 43 , 45 , 46 , 47 , 48 , 50 , 52 , 54 , 56 , 57 , 58 , 59 , 61 , 62 , 63 , 64 , 65 , 66 , 67 , 68 , 69 , 70 , 72 , 73 , 74 , 75 , 76 , 77 , 78 , 79 , 80 , 83 ) , phosphopeptide mapping ( 87 ) , western blotting ( 1 , 4 , 7 , 16 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 27 , 28 , 29 , 36 , 38 , 40 , 41 , 42 , 43 , 45 , 46 , 47 , 50 , 52 , 58 , 62 , 66 , 67 , 68 , 75 , 76 , 77 , 78 , 79 , 80 , 87 )
Disease tissue studied:
ataxia-telangiectasia ( 58 , 73 ) , adrenal cancer ( 23 ) , bone cancer ( 16 , 20 , 21 , 27 , 42 , 62 ) , brain cancer ( 52 , 87 ) , glioblastoma ( 52 , 87 ) , glioblastoma multiforme ( 52 , 87 ) , glioma ( 52 , 87 ) , breast cancer ( 4 , 9 , 17 , 27 , 43 , 83 ) , HER2 positive breast cancer ( 3 ) , luminal A breast cancer ( 3 ) , luminal B breast cancer ( 3 ) , breast cancer, triple negative ( 3 ) , cervical cancer ( 83 ) , colorectal cancer ( 16 , 20 , 21 , 40 , 46 , 50 , 66 , 67 ) , colorectal carcinoma ( 16 , 20 , 21 , 40 , 46 , 50 , 66 , 67 ) , leukemia ( 28 , 45 ) , acute lymphocytic leukemia ( 28 ) , acute myelogenous leukemia ( 45 ) , liver cancer ( 19 ) , lung cancer ( 4 , 7 , 11 , 17 , 24 , 29 , 41 , 44 , 47 , 50 , 65 , 66 , 68 , 69 , 76 , 77 , 87 ) , non-small cell lung cancer ( 4 , 7 , 17 , 29 , 41 , 44 , 50 , 66 , 76 , 77 , 87 ) , non-small cell lung adenocarcinoma ( 11 , 87 ) , neuroblastoma ( 25 , 73 ) , ovarian cancer ( 32 ) , multiple myeloma ( 1 ) , prostate cancer ( 45 ) , fibrosarcoma of soft tissue ( 22 , 23 )
Relevant cell line - cell type - tissue:
'blood, serum' ( 83 ) , 'stem, embryonic' ( 57 ) , 293 (epithelial) [AT1 (human), transfection] ( 26 ) , 293 (epithelial) ( 35 ) , 293FT ( 42 ) , A549 (pulmonary) ( 24 , 41 , 47 , 65 , 66 , 68 , 69 , 77 ) , Aspc1 (pancreatic) ( 75 ) , AT1ABR (lymphoblastoid) ( 58 ) , AT24RM (lymphoblastoid) ( 73 ) , AT2KY ( 27 , 74 ) , AT5BI (fibroblast) ( 74 ) , breast ( 3 ) , BT (epithelial) ( 58 , 73 ) , BT-20 (breast cell) ( 17 ) , BT-549 (breast cell) ( 17 ) , C3ABR (lymphoblastoid) ( 58 , 73 ) , Calu 6 (pulmonary) ( 87 ) , COLO-320 (intestinal) ( 75 ) , COS (fibroblast) ( 77 ) , E.coli (bacterial) ( 83 ) , glial ( 70 ) , GM01526 (lymphoblast) ( 73 ) , GM02254 (lymphoblast) ( 73 ) , GM638 (fibroblast) ( 74 ) , H2009 (pulmonary) ( 17 ) , H2077 (pulmonary) ( 17 ) , H2887 (pulmonary) ( 17 ) , H322M (pulmonary) ( 17 ) , HaCaT (keratinocyte) ( 29 ) , HCA2 (fibroblast) [TERT (human), transfection] ( 79 ) , HCC1359 (pulmonary) ( 17 ) , HCC2279 (pulmonary) ( 17 ) , HCC366 (pulmonary) ( 17 ) , HCC4006 (pulmonary) ( 17 ) , HCC78 (pulmonary) ( 17 ) , HCC827 (pulmonary) ( 17 ) , HCT116 (intestinal) [p53 (human)] ( 46 ) , HCT116 (intestinal) ( 16 , 20 , 21 , 40 , 48 , 59 , 66 , 67 ) , HE49 (embryonic) ( 74 ) , HEK293T (epithelial) ( 6 , 43 ) , HeLa (cervical) ( 20 , 77 , 78 ) , HepG2 (hepatic) ( 19 , 63 ) , HMLER ('stem, breast cancer') [CXCR4 (human), knockdown] ( 9 ) , HMLER ('stem, breast cancer') ( 9 ) , HOP62 (pulmonary) ( 17 ) , HT-29 (intestinal) ( 55 ) , HT1080 (fibroblast) ( 22 , 23 ) , HUVEC (endothelial) ( 36 ) , IMR-90 (fibroblast) ( 72 ) , IMR32 (neural crest) ( 25 ) , JB (epithelial) ( 56 ) , L3 (lymphoblastoid) ( 73 ) , LCLC-103H (pulmonary) ( 17 ) , leukocyte-blood ( 45 ) , liver ( 19 ) , LN18 (glial) ( 52 ) , LNCaP (prostate cell) ( 45 ) , LOU-NH91 (squamous) ( 17 ) , lung ( 11 ) , MCF-7 (breast cell) ( 4 , 27 , 43 ) , MDA-MB-231 (breast cell) ( 17 ) , MDA-MB-435S (breast cell) ( 34 ) , MDA-MB-468 (breast cell) ( 17 ) , MEF (fibroblast) ( 66 ) , MEF (fibroblast) [IGF1R (mouse)] ( 60 ) , MEF (fibroblast) [LKB1 (human)] ( 46 ) , MM.1S (lymphoblast) ( 1 ) , MOLM 13 (myeloid) ( 45 ) , MRC5 (fibroblast) ( 66 ) , MT1 (lymphoblastoid) ( 61 ) , NALM6 (B lymphocyte) ( 28 ) , NCI-H1299 (pulmonary) ( 4 , 7 , 29 , 41 , 44 , 66 , 76 , 77 ) , NCI-H1395 (pulmonary) ( 17 ) , NCI-H1568 (pulmonary) ( 17 ) , NCI-H2030 (pulmonary) ( 17 ) , NCI-H2172 (pulmonary) ( 17 ) , NCI-H322 (pulmonary) ( 17 ) , NCI-H460 (pulmonary) ( 17 , 50 ) , NCI-H520 (squamous) ( 17 ) , NCI-H596 (pulmonary) ( 75 ) , NCI-H647 (pulmonary) ( 17 ) , NCI-H929 (B lymphocyte) ( 1 ) , NHF (fibroblast) ( 80 ) , OM431 ( 75 ) , ovary ( 32 ) , PC-12 Adh ( 23 ) , PC9 (pulmonary) ( 17 ) , RKO (intestinal) ( 59 ) , Saos-2 (bone cell) ( 16 ) , SF9 ( 64 , 83 ) , SHEP (neuron) ( 73 ) , SJSA-1 (bone cell) ( 75 ) , SW480 (intestinal) ( 50 ) , SW680 (intestinal) ( 75 ) , T98G (glial) [p53 (human), transfection] ( 87 ) , TIG (fibroblast) ( 27 ) , TK6 (lymphoblastoid) ( 61 ) , U266 (plasma cell) ( 1 ) , U2OS (bone cell) [GR (human)] ( 54 ) , U2OS (bone cell) ( 20 , 21 , 27 , 42 , 62 ) , U87MG (glial) ( 52 ) , WI-38 (fibroblast) ( 21 ) , WM4 ( 75 ) , WM5 ( 75 ) , WM793 ( 75 ) , WS1 (fibroblast) ( 66 )

Upstream Regulation
Regulatory protein:
Abl (human) ( 19 ) , DUSP26 (human) ( 25 ) , ERK1 (human) ( 7 ) , LKB1 (human) ( 24 ) , MLL5 (human) ( 21 ) , p16-INK4A iso5 (human) ( 62 ) , TERT (human) ( 79 ) , TWIST1 (human) ( 16 )
Putative in vivo kinases:
CK2B (human) ( 22 ) , LKB1 (human) ( 46 ) , NuaK1 (human) ( 24 )
Kinases, in vitro:
CDK7 (human) ( 85 ) , CDK9 (human) ( 53 ) , CK2A1 (human) ( 64 , 71 , 76 , 81 , 84 ) , CK2B (human) ( 22 ) , ERK1 (human) ( 7 ) , LKB1 (human) ( 46 ) , PKR (human) ( 82 )
Treatments:
15d-PGJ2 ( 36 ) , adriamycin ( 22 , 25 , 28 , 29 , 38 , 58 , 59 , 62 , 66 , 73 ) , anisomycin ( 78 ) , arsenite ( 78 ) , asbestos ( 68 ) , beta-lapachone ( 21 ) , bleomycin ( 79 ) , bortezomib ( 1 ) , caffeine ( 65 ) , cAMP_analog ( 70 ) , camptothecin ( 21 ) , colforsin ( 28 ) , deferoxamine ( 67 ) , development ( 79 ) , dexamethasone ( 69 ) , DRB ( 78 ) , etoposide ( 59 ) , fluorouracil ( 67 ) , glucose ( 24 ) , GW_9662 ( 52 ) , H2O2 ( 65 ) , heat_shock ( 70 , 74 ) , HGF ( 19 ) , hyperoxia ( 65 ) , hypoxia ( 67 ) , IBMX ( 28 ) , idarubicin ( 45 ) , imatinib ( 19 ) , ionizing_radiation ( 4 , 15 , 27 , 45 , 66 , 73 , 74 , 79 ) , KU-55933 ( 29 ) , MG132 ( 70 ) , MI-63 ( 38 ) , nocodazole ( 66 ) , NU7441 ( 29 ) , nutlin-3 ( 38 ) , PALA ( 66 ) , plumbagin ( 47 ) , PTPI ( 52 ) , quinacrine ( 22 ) , SB202190 ( 19 ) , SB203580 ( 36 , 78 ) , serum_starvation ( 79 ) , silibinin ( 56 ) , SJG-136 ( 48 ) , SP600125 ( 36 , 47 ) , Su11274 ( 19 ) , taxol ( 66 ) , TMZ ( 61 ) , TNF ( 78 ) , troglitazone ( 52 ) , U0126 ( 7 ) , UV ( 29 , 46 , 56 , 57 , 65 , 66 , 70 , 72 , 74 , 75 , 76 , 77 , 79 , 80 )

Downstream Regulation
Effects of modification on p53:
activity, induced ( 22 , 50 , 59 , 76 , 85 ) , intracellular localization ( 43 , 44 , 50 ) , molecular association, regulation ( 4 , 7 , 16 , 21 , 22 , 24 , 46 , 60 , 81 , 84 , 85 , 86 ) , protein conformation ( 86 ) , protein degradation ( 4 ) , protein stabilization ( 16 , 21 ) , ubiquitination ( 4 )
Effects of modification on biological processes:
apoptosis, altered ( 59 ) , apoptosis, induced ( 50 ) , carcinogenesis, induced ( 7 ) , carcinogenesis, inhibited ( 22 ) , cell cycle regulation ( 24 , 46 ) , cell growth, inhibited ( 24 ) , transcription, altered ( 60 , 76 ) , transcription, induced ( 21 , 40 ) , transcription, inhibited ( 22 )
Induce interaction with:
DNA ( 21 , 22 , 24 , 81 , 85 ) , NFkB-p65 (mouse) ( 60 ) , SMAD3 (human) ( 7 ) , UBE4B (human) ( 4 ) , p21Cip1 (human) ( 46 )
Inhibit interaction with:
CDK1 (human) ( 84 ) , MDM2 (human) ( 16 )

Disease / Diagnostics Relevance
Relevant diseases:
hepatocellular carcinoma ( 19 ) , ovarian cancer ( 32 )

References 

1

Shah SP, Nooka AK, Lonial S, Boise LH (2017) TG02 inhibits proteasome inhibitor-induced HSF1 serine 326 phosphorylation and heat shock response in multiple myeloma. Blood Adv 1, 1848-1853
29296831   Curated Info

2

Qin Z, et al. (2016) PCNA-Ub polyubiquitination inhibits cell proliferation and induces cell-cycle checkpoints. Cell Cycle 15, 3390-3401
27753536   Curated Info

3

Mertins P, et al. (2016) Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534, 55-62
27251275   Curated Info

4

Du C, Wu H, Leng RP (2016) UBE4B targets phosphorylated p53 at serines 15 and 392 for degradation. Oncotarget 7, 2823-36
26673821   Curated Info

5

Agarwal S, Bell CM, Rothbart SB, Moran RG (2015) AMP-activated Protein Kinase (AMPK) Control of mTORC1 Is p53- and TSC2-independent in Pemetrexed-treated Carcinoma Cells. J Biol Chem 290, 27473-86
26391395   Curated Info

6

Franchin C, et al. (2015) Quantitative analysis of a phosphoproteome readily altered by the protein kinase CK2 inhibitor quinalizarin in HEK-293T cells. Biochim Biophys Acta 1854, 609-23
25278378   Curated Info

7

Ji L, et al. (2015) Mutant p53 promotes tumor cell malignancy by both positive and negative regulation of the transforming growth factor β (TGF-β) pathway. J Biol Chem 290, 11729-40
25767119   Curated Info

8

Mertins P, et al. (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol Cell Proteomics 13, 1690-704
24719451   Curated Info

9

Yi T, et al. (2014) Quantitative phosphoproteomic analysis reveals system-wide signaling pathways downstream of SDF-1/CXCR4 in breast cancer stem cells. Proc Natl Acad Sci U S A 111, E2182-90
24782546   Curated Info

10

Rao F, et al. (2014) Inositol pyrophosphates mediate the DNA-PK/ATM-p53 cell death pathway by regulating CK2 phosphorylation of Tti1/Tel2. Mol Cell 54, 119-32
24657168   Curated Info

11

Schweppe DK, Rigas JR, Gerber SA (2013) Quantitative phosphoproteomic profiling of human non-small cell lung cancer tumors. J Proteomics 91, 286-96
23911959   Curated Info

12

Choi DW, et al. (2013) WIP1, a homeostatic regulator of the DNA damage response, is targeted by HIPK2 for phosphorylation and degradation. Mol Cell 51, 374-85
23871434   Curated Info

13

Shiromizu T, et al. (2013) Identification of missing proteins in the neXtProt database and unregistered phosphopeptides in the PhosphoSitePlus database as part of the Chromosome-centric Human Proteome Project. J Proteome Res 12, 2414-21
23312004   Curated Info

14

Bagashev A, et al. (2013) Cdk9 phosphorylates Pirh2 protein and prevents degradation of p53 protein. Cell Cycle 12, 1569-77
23603988   Curated Info

15

Shahar OD, et al. (2013) acetylation of lysine 382 and phosphorylation of serine 392 in p53 modulate the interaction between p53 and MDC1 in vitro. PLoS One 8, e78472
24194938   Curated Info

16

Piccinin S, et al. (2012) A "Twist box" Code of p53 Inactivation: Twist box:p53 Interaction Promotes p53 Degradation. Cancer Cell 22, 404-15
22975381   Curated Info

17

Klammer M, et al. (2012) Phosphosignature predicts dasatinib response in non-small cell lung cancer. Mol Cell Proteomics 11, 651-68
22617229   Curated Info

18

Wang H, et al. (2012) The HDAC inhibitor depsipeptide transactivates the p53/p21 pathway by inducing DNA damage. DNA Repair (Amst) 11, 146-56
22112863   Curated Info

19

Furlan A, et al. (2011) Abl interconnects oncogenic Met and p53 core pathways in cancer cells. Cell Death Differ 18, 1608-16
21455220   Curated Info

20

Malik SA, et al. (2011) BH3 mimetics activate multiple pro-autophagic pathways. Oncogene 30, 3918-29
21460857   Curated Info

21

Cheng F, et al. (2011) Camptothecin-induced downregulation of MLL5 contributes to the activation of tumor suppressor p53. Oncogene 30, 3599-611
21423215   Curated Info

22

Gasparian AV, et al. (2011) Curaxins: anticancer compounds that simultaneously suppress NF-κB and activate p53 by targeting FACT. Sci Transl Med 3, 95ra74
21832239   Curated Info

23

Kim HD, Kim TS, Kim J (2011) Aberrant ribosome biogenesis activates c-Myc and ASK1 pathways resulting in p53-dependent G1 arrest. Oncogene 30, 3317-27
21383696   Curated Info

24

Hou X, et al. (2011) A new role of NUAK1: directly phosphorylating p53 and regulating cell proliferation. Oncogene 30, 2933-42
21317932   Curated Info

25

Shang X, et al. (2010) Dual-specificity phosphatase 26 is a novel p53 phosphatase and inhibits p53 tumor suppressor functions in human neuroblastoma. Oncogene 29, 4938-46
20562916   Curated Info

26

Xiao K, et al. (2010) Global phosphorylation analysis of beta-arrestin-mediated signaling downstream of a seven transmembrane receptor (7TMR). Proc Natl Acad Sci U S A 107, 15299-304
20686112   Curated Info

27

Kodama M, et al. (2010) Requirement of ATM for rapid p53 phosphorylation at Ser46 without Ser/Thr-Gln sequences. Mol Cell Biol 30, 1620-33
20123963   Curated Info

28

Safa M, et al. (2010) Inhibitory role of cAMP on doxorubicin-induced apoptosis in pre-B ALL cells through dephosphorylation of p53 serine residues. Apoptosis 15, 196-203
19882354   Curated Info

29

Craig AL, et al. (2010) DeltaNp63 transcriptionally regulates ATM to control p53 Serine-15 phosphorylation. Mol Cancer 9, 195
20663147   Curated Info

30

Nishimura T, et al. (2009) Hepatitis C virus impairs p53 via persistent overexpression of 3beta-hydroxysterol Delta24-reductase. J Biol Chem 284, 36442-52
19861417   Curated Info

31

van Dieck J, et al. (2009) Posttranslational modifications affect the interaction of S100 proteins with tumor suppressor p53. J Mol Biol 394, 922-30
19819244   Curated Info

32

Bar JK, et al. (2009) Expression of p53 protein phosphorylated at serine 20 and serine 392 in malignant and benign ovarian neoplasms: correlation with clinicopathological parameters of tumors. Int J Gynecol Cancer 19, 1322-8
20009884   Curated Info

33

Yadavilli S, Chen Z, Albrecht T, Muganda PM (2009) Mechanism of diepoxybutane-induced p53 regulation in human cells. J Biochem Mol Toxicol 23, 373-86
20024960   Curated Info

34

Oppermann FS, et al. (2009) Large-scale proteomics analysis of the human kinome. Mol Cell Proteomics 8, 1751-64
19369195   Curated Info

35

Gauci S, et al. (2009) Lys-N and trypsin cover complementary parts of the phosphoproteome in a refined SCX-based approach. Anal Chem 81, 4493-501
19413330   Curated Info

36

Ho TC, et al. (2008) 15-deoxy-Delta(12,14)-prostaglandin J2 induces vascular endothelial cell apoptosis through the sequential activation of MAPKS and p53. J Biol Chem 283, 30273-88
18718914   Curated Info

37

Warnock LJ, et al. (2008) Influence of tetramerisation on site-specific post-translational modifications of p53: comparison of human and murine p53 tumor suppressor protein. Cancer Biol Ther 7, 1481-9
18769132   Curated Info

38

Jones RJ, et al. (2008) Inhibition of the p53 E3 ligase HDM-2 induces apoptosis and DNA damage--independent p53 phosphorylation in mantle cell lymphoma. Clin Cancer Res 14, 5416-25
18765533   Curated Info

39

Chen JJ, Chou CW, Chang YF, Chen CC (2008) Proteasome inhibitors enhance TRAIL-induced apoptosis through the intronic regulation of DR5: involvement of NF-kappaB and reactive oxygen species-mediated p53 activation. J Immunol 180, 8030-9
18523266   Curated Info

40

Warnock LJ, Adamson R, Lynch CJ, Milner J (2008) Crosstalk between site-specific modifications on p53 and histone H3. Oncogene 27, 1639-44
17891183   Curated Info

41

Dey A, et al. (2008) R-Roscovitine simultaneously targets both the p53 and NF-kappaB pathways and causes potentiation of apoptosis: implications in cancer therapy. Cell Death Differ 15, 263-73
17975552   Curated Info

42

Chang PC, Li M (2008) Kaposi's sarcoma-associated herpesvirus K-cyclin interacts with Cdk9 and stimulates Cdk9-mediated phosphorylation of p53 tumor suppressor. J Virol 82, 278-90
17942552   Curated Info

43

Sun L, et al. (2008) In GFP with high risk HPV-18E6 fusion protein expressed 293T and MCF-7 cells, the endogenous wild-type p53 could be transiently phosphorylated at multiple sites. J Exp Clin Cancer Res 27, 35
18778462   Curated Info

44

Karni-Schmidt O, et al. (2007) Energy-dependent nucleolar localization of p53 in vitro requires two discrete regions within the p53 carboxyl terminus. Oncogene 26, 3878-91
17237827   Curated Info

45

Irish JM, et al. (2007) Flt3 Y591 duplication and Bcl-2 overexpression are detected in acute myeloid leukemia cells with high levels of phosphorylated wild-type p53. Blood 109, 2589-96
17105820   Curated Info

46

Zeng PY, Berger SL (2006) LKB1 is recruited to the p21/WAF1 promoter by p53 to mediate transcriptional activation. Cancer Res 66, 10701-8
17108107   Curated Info

47

Hsu YL, et al. (2006) Plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone) induces apoptosis and cell cycle arrest in A549 cells through p53 accumulation via c-Jun NH2-terminal kinase-mediated phosphorylation at serine 15 in vitro and in vivo. J Pharmacol Exp Ther 318, 484-94
16632641   Curated Info

48

Arnould S, et al. (2006) Time-dependent cytotoxicity induced by SJG-136 (NSC 694501): influence of the rate of interstrand cross-link formation on DNA damage signaling. Mol Cancer Ther 5, 1602-9
16818520   Curated Info

49

Knights CD, et al. (2006) Distinct p53 acetylation cassettes differentially influence gene-expression patterns and cell fate. J Cell Biol 173, 533-44
16717128   Curated Info

50

Mungamuri SK, Yang X, Thor AD, Somasundaram K (2006) Survival signaling by Notch1: mammalian target of rapamycin (mTOR)-dependent inhibition of p53. Cancer Res 66, 4715-24
16651424   Curated Info

51

Moiseeva O, et al. (2006) DNA damage signaling and p53-dependent senescence after prolonged beta-interferon stimulation. Mol Biol Cell 17, 1583-92
16436515   Curated Info

52

Akasaki Y, et al. (2006) A peroxisome proliferator-activated receptor-gamma agonist, troglitazone, facilitates caspase-8 and -9 activities by increasing the enzymatic activity of protein-tyrosine phosphatase-1B on human glioma cells. J Biol Chem 281, 6165-74
16319070   Curated Info

53

Radhakrishnan SK, Gartel AL (2006) CDK9 phosphorylates p53 on serine residues 33, 315 and 392. Cell Cycle 5, 519-21
16552184   Curated Info

54

Mayo LD, et al. (2005) Phosphorylation of human p53 at serine 46 determines promoter selection and whether apoptosis is attenuated or amplified. J Biol Chem 280, 25953-9
15843377   Curated Info

55

Kim JE, Tannenbaum SR, White FM (2005) Global phosphoproteome of HT-29 human colon adenocarcinoma cells. J Proteome Res 4, 1339-46
16083285   Curated Info

56

Dhanalakshmi S, Agarwal C, Singh RP, Agarwal R (2005) Silibinin up-regulates DNA-protein kinase-dependent p53 activation to enhance UVB-induced apoptosis in mouse epithelial JB6 cells. J Biol Chem 280, 20375-83
15792956   Curated Info

57

Lin T, et al. (2005) p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression. Nat Cell Biol 7, 165-71
15619621   Curated Info

58

Kurz EU, Douglas P, Lees-Miller SP (2004) Doxorubicin activates ATM-dependent phosphorylation of multiple downstream targets in part through the generation of reactive oxygen species. J Biol Chem 279, 53272-81
15489221   Curated Info

59

Thompson T, et al. (2004) Phosphorylation of p53 on key serines is dispensable for transcriptional activation and apoptosis. J Biol Chem 279, 53015-22
15471885   Curated Info

60

Jeong SJ, Radonovich M, Brady JN, Pise-Masison CA (2004) HTLV-I Tax induces a novel interaction between p65/RelA and p53 that results in inhibition of p53 transcriptional activity. Blood 104, 1490-7
15155458   Curated Info

61

Caporali S, et al. (2004) DNA damage induced by temozolomide signals to both ATM and ATR: role of the mismatch repair system. Mol Pharmacol 66, 478-91
15322239   Curated Info

62

Jackson MW, et al. (2004) Limited role of N-terminal phosphoserine residues in the activation of transcription by p53. Oncogene 23, 4477-87
15064747   Curated Info

63

Kao CF, Chen SY, Chen JY, Wu Lee YH (2004) Modulation of p53 transcription regulatory activity and post-translational modification by hepatitis C virus core protein. Oncogene 23, 2472-83
14968111   Curated Info

64

Pospísilová S, et al. (2004) Activation of the DNA-binding ability of latent p53 protein by protein kinase C is abolished by protein kinase CK2. Biochem J 378, 939-47
14640983   Curated Info

65

Das KC, Dashnamoorthy R (2004) Hyperoxia activates the ATR-Chk1 pathway and phosphorylates p53 at multiple sites. Am J Physiol Lung Cell Mol Physiol 286, L87-97
12959929   Curated Info

66

Saito S, et al. (2003) Phosphorylation site interdependence of human p53 post-translational modifications in response to stress. J Biol Chem 278, 37536-44
12860987   Curated Info

67

Achison M, Hupp TR (2003) Hypoxia attenuates the p53 response to cellular damage. Oncogene 22, 3431-40
12776195   Curated Info

68

Matsuoka M, Igisu H, Morimoto Y (2003) Phosphorylation of p53 protein in A549 human pulmonary epithelial cells exposed to asbestos fibers. Environ Health Perspect 111, 509-12
12676607   Curated Info

69

Urban G, et al. (2003) Identification of a functional link for the p53 tumor suppressor protein in dexamethasone-induced growth suppression. J Biol Chem 278, 9747-53
12519780   Curated Info

70

Wang C, Chen J (2003) Phosphorylation and hsp90 binding mediate heat shock stabilization of p53. J Biol Chem 278, 2066-71
12427754   Curated Info

71

Keller DM, Lu H (2002) p53 serine 392 phosphorylation increases after UV through induction of the assembly of the CK2.hSPT16.SSRP1 complex. J Biol Chem 277, 50206-13
12393879   Curated Info

72

Bulavin DV, et al. (2002) Amplification of PPM1D in human tumors abrogates p53 tumor-suppressor activity. Nat Genet 31, 210-5
12021785   Curated Info

73

Saito S, et al. (2002) ATM mediates phosphorylation at multiple p53 sites, including Ser(46), in response to ionizing radiation. J Biol Chem 277, 12491-4
11875057   Curated Info

74

Miyakoda M, Suzuki K, Kodama S, Watanabe M (2002) Activation of ATM and phosphorylation of p53 by heat shock. Oncogene 21, 1090-6
11850826   Curated Info

75

Minamoto T, et al. (2001) Distinct pattern of p53 phosphorylation in human tumors. Oncogene 20, 3341-7
11423984   Curated Info

76

Keller DM, et al. (2001) A DNA damage-induced p53 serine 392 kinase complex contains CK2, hSpt16, and SSRP1. Mol Cell 7, 283-92
11239457   Curated Info

77

Takekawa M, et al. (2000) p53-inducible wip1 phosphatase mediates a negative feedback regulation of p38 MAPK-p53 signaling in response to UV radiation. EMBO J 19, 6517-26
11101524   Curated Info

78

Sayed M, et al. (2000) Stress-induced activation of protein kinase CK2 by direct interaction with p38 mitogen-activated protein kinase. J Biol Chem 275, 16569-73
10747897   Curated Info

79

Webley K, et al. (2000) Posttranslational modifications of p53 in replicative senescence overlapping but distinct from those induced by DNA damage. Mol Cell Biol 20, 2803-8
10733583   Curated Info

80

Buschmann T, et al. (2000) p53 phosphorylation and association with murine double minute 2, c-Jun NH2-terminal kinase, p14ARF, and p300/CBP during the cell cycle and after exposure to ultraviolet irradiation. Cancer Res 60, 896-900
10706102   Curated Info

81

Kapoor M, et al. (2000) Cooperative phosphorylation at multiple sites is required to activate p53 in response to UV radiation. Oncogene 19, 358-64
10656682   Curated Info

82

Cuddihy AR, et al. (1999) The double-stranded RNA activated protein kinase PKR physically associates with the tumor suppressor p53 protein and phosphorylates human p53 on serine 392 in vitro. Oncogene 18, 2690-702
10348343   Curated Info

83

Otvos L, et al. (1998) A monoclonal antibody to a multiphosphorylated, conformational epitope at the carboxy-terminus of p53. Biochim Biophys Acta 1404, 457-74
9739174   Curated Info

84

Wagner P, et al. (1998) Fine mapping and regulation of the association of p53 with p34cdc2. Oncogene 16, 105-11
9467949   Curated Info

85

Lu H, Fisher RP, Bailey P, Levine AJ (1997) The CDK7-cycH-p36 complex of transcription factor IIH phosphorylates p53, enhancing its sequence-specific DNA binding activity in vitro. Mol Cell Biol 17, 5923-34
9315650   Curated Info

86

Sakaguchi K, et al. (1997) Phosphorylation of serine 392 stabilizes the tetramer formation of tumor suppressor protein p53. Biochemistry 36, 10117-24
9254608   Curated Info

87

Ullrich SJ, et al. (1993) Phosphorylation at Ser-15 and Ser-392 in mutant p53 molecules from human tumors is altered compared to wild-type p53. Proc Natl Acad Sci U S A 90, 5954-8
8327466   Curated Info

88

Lees-Miller SP, et al. (1992) Human DNA-activated protein kinase phosphorylates serines 15 and 37 in the amino-terminal transactivation domain of human p53. Mol Cell Biol 12, 5041-9
1406679   Curated Info