Ser20
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.5.9.3
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser20  -  p53 (human)

Site Information
PLsQEtFsDLWkLLP   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 447529

In vivo Characterization
Methods used to characterize site in vivo:
2D analysis ( 61 , 104 ) , [32P] bio-synthetic labeling ( 93 ) , immunoprecipitation ( 5 , 11 , 23 , 26 , 38 , 67 , 80 , 102 , 103 ) , mass spectrometry ( 38 , 101 ) , microscopy-colocalization with upstream kinase ( 37 ) , modification-specific antibody ( 67 , 69 , 98 ) , mutation of modification site ( 11 , 17 , 19 , 36 , 38 , 40 , 64 , 69 , 71 , 79 , 84 , 85 , 86 , 87 , 89 , 90 , 92 , 93 , 96 , 102 , 103 ) , phospho-antibody ( 1 , 5 , 7 , 11 , 16 , 17 , 18 , 19 , 22 , 23 , 25 , 26 , 29 , 31 , 32 , 33 , 35 , 36 , 37 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 65 , 66 , 67 , 68 , 69 , 70 , 71 , 73 , 74 , 75 , 76 , 77 , 78 , 80 , 81 , 83 , 85 , 86 , 88 , 90 , 91 , 95 , 96 , 98 , 99 , 102 , 103 , 105 ) , phosphoamino acid analysis ( 36 , 82 ) , phosphopeptide mapping ( 104 ) , western blotting ( 1 , 5 , 7 , 11 , 16 , 17 , 18 , 19 , 22 , 23 , 25 , 26 , 31 , 32 , 33 , 35 , 36 , 37 , 38 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 48 , 49 , 50 , 52 , 54 , 56 , 60 , 61 , 63 , 65 , 67 , 68 , 69 , 71 , 73 , 74 , 76 , 78 , 82 , 85 , 91 , 94 , 96 , 98 , 99 , 102 , 103 , 104 , 105 )
Disease tissue studied:
ataxia-telangiectasia ( 56 , 65 , 80 , 99 ) , adrenal cancer ( 18 ) , bone cancer ( 5 , 11 , 19 , 36 , 45 , 50 , 60 , 61 , 71 , 99 , 102 ) , brain cancer ( 82 , 104 ) , glioblastoma ( 82 , 104 ) , glioblastoma multiforme ( 82 , 104 ) , glioma ( 82 , 104 ) , breast cancer ( 33 , 37 , 46 , 50 , 94 ) , colorectal cancer ( 43 , 45 , 48 , 52 , 64 , 67 , 69 , 78 , 105 ) , colorectal carcinoma ( 43 , 45 , 48 , 52 , 64 , 67 , 69 , 78 , 105 ) , leukemia ( 25 , 41 , 50 , 71 , 94 , 101 ) , acute lymphocytic leukemia ( 25 ) , acute myelogenous leukemia ( 41 , 71 , 101 ) , chronic myelogenous leukemia ( 94 ) , T cell leukemia ( 50 ) , liver cancer ( 7 , 16 ) , hepatocellular carcinoma ( 7 , 16 ) , lung cancer ( 11 , 19 , 35 , 36 , 40 , 48 , 62 , 66 , 69 , 71 , 76 , 94 , 96 , 104 ) , non-small cell lung cancer ( 11 , 19 , 35 , 36 , 40 , 48 , 62 , 69 , 96 , 104 ) , non-small cell lung adenocarcinoma ( 11 , 35 , 104 ) , non-small cell squamous cell lung carcinoma ( 62 ) , lymphoma ( 103 ) , anaplastic large cell lymphoma ( 103 ) , neuroblastoma ( 23 , 80 ) , ovarian cancer ( 29 ) , prostate cancer ( 41 , 49 , 68 ) , fibrosarcoma of soft tissue ( 17 , 18 )
Relevant cell line - cell type - tissue:
'epithelial, lung' ( 62 ) , 2237 (melanocyte) ( 70 ) , 293 (epithelial) ( 23 , 38 ) , A2780 (ovarian) ( 58 ) , A375 (melanocyte) ( 92 ) , A549 (pulmonary) ( 11 , 66 , 69 , 76 , 86 , 94 , 95 , 96 ) , AG01522 (fibroblast) ( 99 ) , Aspc1 (pancreatic) ( 91 ) , AT1ABR (lymphoblastoid) ( 56 , 99 ) , AT24RM (lymphoblastoid) ( 80 ) , AT2KY ( 83 ) , AT5BI (fibroblast) ( 83 , 99 ) , AT5BIVA (fibroblast) ( 89 ) , AT65RM (lymphoblastoid) ( 65 ) , BT (epithelial) ( 56 , 80 ) , BV-173 (myeloid) ( 94 ) , C3ABR (lymphoblastoid) ( 56 , 80 ) , Calu 6 (pulmonary) ( 104 ) , Caov-3 (ovarian) ( 58 ) , CCRF-CEM (T lymphocyte) ( 103 ) , chondrocyte ( 79 ) , COLO-320 (intestinal) ( 91 ) , COS (fibroblast) ( 87 ) , epithelial-corneal ( 54 ) , fibroblast ( 96 ) , glial ( 77 ) , GM00637 (lymphoblast) ( 44 , 85 , 88 ) , GM01526 (lymphoblast) ( 80 ) , GM02254 (lymphoblast) ( 80 ) , GM638 (fibroblast) ( 83 ) , HAEC (endothelial) ( 1 ) , HCC (hepatic) ( 16 ) , HCC2279 (pulmonary) ( 35 ) , HCT116 (intestinal) ( 47 , 52 , 57 , 64 , 67 , 69 , 78 , 105 ) , HE49 (embryonic) ( 83 ) , HEK293T (epithelial) ( 37 , 50 ) , HeLa (cervical) [p53 (human), transfection] ( 26 ) , HeLa (cervical) ( 85 ) , hepatocyte-liver ( 16 ) , HepG2 (hepatic) ( 7 , 16 ) , HFFF-2 (fibroblast) ( 60 ) , HT-29 (intestinal) ( 103 ) , HT1080 (fibroblast) ( 17 , 18 ) , HUVEC (endothelial) ( 1 , 31 ) , IMR32 (neural crest) ( 23 ) , JB (epithelial) ( 81 ) , L3 (lymphoblastoid) ( 80 ) , LCL (lymphoblastoid) ( 42 , 65 ) , leukocyte-blood ( 41 ) , LNCaP (prostate cell) ( 41 , 49 , 68 , 103 ) , lymphoblastoid ( 65 ) , MCF-10A (breast cell) ( 46 ) , MCF-7 (breast cell) ( 33 , 37 , 50 , 75 , 86 , 94 , 95 ) , MDAH041 (fibroblast) ( 84 ) , MDAPanc-28/Puro (pancreatic) ( 53 ) , MEF (fibroblast) ( 69 , 102 ) , MEF (fibroblast) [IGF1R (mouse)] ( 90 ) , MOLM 13 (myeloid) ( 41 ) , MOLT-3 (T lymphocyte) ( 32 ) , MOLT-4 (T lymphocyte) ( 50 ) , Mori (fibroblast) ( 86 ) , MRC5 (fibroblast) ( 69 ) , MT1 (lymphoblastoid) ( 59 ) , NALM6 (B lymphocyte) ( 25 ) , NB-4 (myeloid) ( 71 ) , NBS-ILB1 (fibroblast) ( 74 ) , NCI-H1299 (pulmonary) [p53 (human)] ( 40 ) , NCI-H1299 (pulmonary) ( 11 , 19 , 36 , 69 , 71 , 87 , 93 , 95 , 96 ) , NCI-H460 (pulmonary) ( 48 ) , NCI-H596 (pulmonary) ( 91 ) , NHF (fibroblast) ( 63 , 73 , 98 ) , OCI/AML3 (myeloid) ( 101 ) , OM431 ( 91 ) , ovary ( 29 ) , OVCAR3 (ovarian) ( 58 ) , PC-12 Adh ( 18 ) , RKO (intestinal) ( 57 ) , Saos-2 (bone cell) ( 19 , 71 , 90 , 92 ) , SHEP (neuron) ( 80 ) , SJSA-1 (bone cell) ( 91 ) , SKOV-3 (ovarian) ( 58 ) , SNU-398 (hepatic) ( 7 ) , SW480 (intestinal) ( 43 , 48 ) , SW680 (intestinal) ( 91 ) , T98G (glial) [p53 (human), transfection] ( 104 ) , TIG (fibroblast) ( 95 ) , TK6 (lymphoblastoid) ( 59 ) , U-251 MG (glial) ( 82 ) , U2OS (bone cell) [GR (human)] ( 51 , 55 , 60 , 90 ) , U2OS (bone cell) ( 5 , 11 , 36 , 45 , 50 , 61 , 99 , 102 ) , U373 MG (glial) ( 82 ) , U87MG (glial) ( 82 ) , WM4 ( 91 ) , WM5 ( 91 ) , WM793 ( 91 ) , WS1 (fibroblast) ( 69 , 96 )

Upstream Regulation
Regulatory protein:
ATM (human) ( 36 , 65 , 99 ) , BRCA1 (human) ( 33 ) , DUSP26 (human) ( 23 ) , E2F1 (human) ( 63 ) , Myc (human) ( 73 ) , NBS1 (human) ( 74 ) , p53 (human) ( 82 ) , PLK3 (human) ( 44 ) , Tax (retrovirus) ( 38 )
Putative in vivo kinases:
ATM (human) ( 60 ) , CDK5 (human) ( 26 ) , Chk1 (human) ( 40 ) , Chk2 (human) ( 99 ) , CK1A (human) ( 32 ) , DAPK1 (human) ( 40 ) , JNK1 (human) ( 81 ) , JNK2 (human) ( 81 ) , PLK3 (human) ( 53 , 85 )
Kinases, in vitro:
AMPKA1 (human) ( 40 ) , Chk1 (human) ( 40 , 100 ) , Chk2 (human) ( 40 , 97 , 99 , 100 ) , CK1A (human) ( 24 , 32 ) , CK1D (human) ( 24 , 32 ) , DAPK1 (human) ( 40 ) , DAPK3 (human) ( 40 ) , DNAPK (human) ( 40 ) , DRAK1 (human) ( 40 ) , JNK1 (human) ( 81 ) , JNK2 (human) ( 81 ) , MAPKAPK2 (human) ( 81 ) , PLK3 (human) ( 53 , 85 , 88 )
Putative upstream phosphatases:
DUSP26 (human) ( 23 )
Phosphatases, in vitro:
DUSP26 (human) ( 23 )
Treatments:
11,11'-dideoxyverticillin ( 52 ) , 15d-PGJ2 ( 31 ) , adriamycin ( 23 , 25 , 43 , 50 , 56 , 57 , 61 , 69 , 80 , 85 , 88 , 95 ) , As2O3 ( 71 ) , asbestos ( 76 ) , bortezomib ( 68 ) , BPDE ( 46 ) , caffeine ( 36 , 63 , 66 , 88 ) , cAMP_analog ( 77 ) , Cdk2/5_inhibitor ( 26 ) , cisplatin ( 50 , 62 , 82 ) , colforsin ( 25 ) , cycloheximide ( 60 ) , D4476 ( 32 ) , DDATHF ( 67 ) , doxycycline ( 53 ) , etoposide ( 50 , 57 , 63 , 67 , 68 ) , Go_6976 ( 16 ) , grape_seed_extract ( 49 ) , H2O2 ( 44 , 66 , 75 , 88 ) , heat_shock ( 77 , 83 ) , high_glucose ( 1 ) , hyperoxia ( 66 ) , IBMX ( 25 ) , idarubicin ( 41 ) , ionizing_radiation ( 32 , 33 , 35 , 36 , 42 , 62 , 63 , 65 , 67 , 69 , 71 , 74 , 75 , 78 , 80 , 82 , 83 , 86 , 94 , 95 , 96 , 99 , 101 , 102 , 103 , 105 ) , KU-55933 ( 36 ) , MG132 ( 36 , 77 ) , nocodazole ( 69 ) , okadaic_acid ( 26 , 45 ) , PALA ( 69 ) , PD98059 ( 81 ) , SB202190 ( 81 ) , SB203580 ( 31 , 52 ) , siRNA ( 33 ) , SJG-136 ( 47 ) , SP600125 ( 31 ) , taxol ( 69 , 93 ) , TMZ ( 59 ) , UCN-01 ( 78 , 105 ) , UV ( 36 , 54 , 55 , 66 , 69 , 70 , 81 , 83 , 90 , 91 , 94 , 95 , 98 , 99 , 102 , 103 ) , vinorelbine ( 62 ) , virus infection ( 16 , 32 , 60 ) , VRX0466617 ( 42 ) , wortmannin ( 36 , 44 , 60 )

Downstream Regulation
Effects of modification on p53:
activity, induced ( 40 , 48 , 57 ) , intracellular localization ( 37 , 48 , 90 ) , molecular association, regulation ( 3 , 6 , 21 , 71 , 92 , 99 , 102 ) , phosphorylation ( 69 ) , protein conformation ( 3 , 6 ) , protein degradation ( 43 ) , protein stabilization ( 19 , 21 , 99 , 102 )
Effects of modification on biological processes:
apoptosis, altered ( 57 ) , apoptosis, induced ( 48 , 53 , 64 , 81 , 82 ) , cell cycle regulation ( 95 ) , cell growth, altered ( 43 , 85 ) , transcription, altered ( 40 , 64 , 85 , 90 , 92 )
Induce interaction with:
CBP (human) ( 3 , 21 ) , Chk2 (human) ( 71 ) , p300 (human) ( 92 )
Inhibit interaction with:
MDM2 (human) ( 6 , 99 , 102 )

Disease / Diagnostics Relevance
Relevant diseases:
ovarian cancer ( 29 )

References 

1

Wu Y, et al. (2017) High glucose-induced p53 phosphorylation contributes to impairment of endothelial antioxidant system. Biochim Biophys Acta 1863, 2355-2362
28673515   Curated Info

2

Qin Z, et al. (2016) PCNA-Ub polyubiquitination inhibits cell proliferation and induces cell-cycle checkpoints. Cell Cycle 15, 3390-3401
27753536   Curated Info

3

Ithuralde RE, Turjanski AG (2016) Phosphorylation Regulates the Bound Structure of an Intrinsically Disordered Protein: The p53-TAZ2 Case. PLoS One 11, e0144284
26742101   Curated Info

4

Agarwal S, Bell CM, Rothbart SB, Moran RG (2015) AMP-activated Protein Kinase (AMPK) Control of mTORC1 Is p53- and TSC2-independent in Pemetrexed-treated Carcinoma Cells. J Biol Chem 290, 27473-86
26391395   Curated Info

5

Magni M, et al. (2015) CCAR2/DBC1 is required for Chk2-dependent KAP1 phosphorylation and repair of DNA damage. Oncotarget 6, 17817-31
26158765   Curated Info

6

ElSawy KM, et al. (2015) A spatiotemporal characterization of the effect of p53 phosphorylation on its interaction with MDM2. Cell Cycle 14, 179-88
25584963   Curated Info

7

Giovannini C, et al. (2014) Suppression of p53 by Notch3 is mediated by Cyclin G1 and sustained by MDM2 and miR-221 axis in hepatocellular carcinoma. Oncotarget 5, 10607-20
25431954   Curated Info

8

Rao F, et al. (2014) Inositol pyrophosphates mediate the DNA-PK/ATM-p53 cell death pathway by regulating CK2 phosphorylation of Tti1/Tel2. Mol Cell 54, 119-32
24657168   Curated Info

9

Choi DW, et al. (2013) WIP1, a homeostatic regulator of the DNA damage response, is targeted by HIPK2 for phosphorylation and degradation. Mol Cell 51, 374-85
23871434   Curated Info

10

Chen K, et al. (2013) Acetylation of the Cell-Fate Factor Dachshund Determines p53 Binding and Signaling Modules in Breast Cancer. Oncotarget 4, 923-35
23798621   Curated Info

11

Serrano MA, et al. (2013) DNA-PK, ATM and ATR collaboratively regulate p53-RPA interaction to facilitate homologous recombination DNA repair. Oncogene 32, 2452-62
22797063   Curated Info

12

Lee CW, et al. (2012) AMPK Promotes p53 Acetylation via Phosphorylation and Inactivation of SIRT1 in Liver Cancer Cells. Cancer Res 72, 4394-404
22728651   Curated Info

13

Kim WJ, Rivera MN, Coffman EJ, Haber DA (2012) The WTX tumor suppressor enhances p53 acetylation by CBP/p300. Mol Cell 45, 587-97
22285752   Curated Info

14

Wang H, et al. (2012) The HDAC inhibitor depsipeptide transactivates the p53/p21 pathway by inducing DNA damage. DNA Repair (Amst) 11, 146-56
22112863   Curated Info

15

Verkhivker GM (2012) Simulating Molecular Mechanisms of the MDM2-Mediated Regulatory Interactions: A Conformational Selection Model of the MDM2 Lid Dynamics. PLoS One 7, e40897
22815859   Curated Info

16

Knoll S, et al. (2011) Dissection of cell context-dependent interactions between HBx and p53 family members in regulation of apoptosis: a role for HBV-induced HCC. Cell Cycle 10, 3554-65
22030623   Curated Info

17

Gasparian AV, et al. (2011) Curaxins: anticancer compounds that simultaneously suppress NF-κB and activate p53 by targeting FACT. Sci Transl Med 3, 95ra74
21832239   Curated Info

18

Kim HD, Kim TS, Kim J (2011) Aberrant ribosome biogenesis activates c-Myc and ASK1 pathways resulting in p53-dependent G1 arrest. Oncogene 30, 3317-27
21383696   Curated Info

19

Ozeki C, et al. (2011) Cancer susceptibility polymorphism of p53 at codon 72 affects phosphorylation and degradation of p53 protein. J Biol Chem 286, 18251-60
21454683   Curated Info

20

Mellert HS, et al. (2011) Deacetylation of the DNA-binding domain regulates p53-mediated apoptosis. J Biol Chem 286, 4264-70
21148320   Curated Info

21

Lee CW, et al. (2010) Graded enhancement of p53 binding to CREB-binding protein (CBP) by multisite phosphorylation. Proc Natl Acad Sci U S A 107, 19290-5
20962272   Curated Info

22

Park J, et al. (2010) Dyrk1A phosphorylates p53 and inhibits proliferation of embryonic neuronal cells. J Biol Chem 285, 31895-906
20696760   Curated Info

23

Shang X, et al. (2010) Dual-specificity phosphatase 26 is a novel p53 phosphatase and inhibits p53 tumor suppressor functions in human neuroblastoma. Oncogene 29, 4938-46
20562916   Curated Info

24

Venerando A, et al. (2010) Isoform specific phosphorylation of p53 by protein kinase CK1. Cell Mol Life Sci 67, 1105-18
20041275   Curated Info

25

Safa M, et al. (2010) Inhibitory role of cAMP on doxorubicin-induced apoptosis in pre-B ALL cells through dephosphorylation of p53 serine residues. Apoptosis 15, 196-203
19882354   Curated Info

26

Ajay AK, et al. (2010) Cdk5 phosphorylates non-genotoxically overexpressed p53 following inhibition of PP2A to induce cell cycle arrest/apoptosis and inhibits tumor progression. Mol Cancer 9, 204
20673369   Curated Info

27

Nishimura T, et al. (2009) Hepatitis C virus impairs p53 via persistent overexpression of 3beta-hydroxysterol Delta24-reductase. J Biol Chem 284, 36442-52
19861417   Curated Info

28

van Dieck J, et al. (2009) Posttranslational modifications affect the interaction of S100 proteins with tumor suppressor p53. J Mol Biol 394, 922-30
19819244   Curated Info

29

Bar JK, et al. (2009) Expression of p53 protein phosphorylated at serine 20 and serine 392 in malignant and benign ovarian neoplasms: correlation with clinicopathological parameters of tumors. Int J Gynecol Cancer 19, 1322-8
20009884   Curated Info

30

Yadavilli S, Chen Z, Albrecht T, Muganda PM (2009) Mechanism of diepoxybutane-induced p53 regulation in human cells. J Biochem Mol Toxicol 23, 373-86
20024960   Curated Info

31

Ho TC, et al. (2008) 15-deoxy-Delta(12,14)-prostaglandin J2 induces vascular endothelial cell apoptosis through the sequential activation of MAPKS and p53. J Biol Chem 283, 30273-88
18718914   Curated Info

32

MacLaine NJ, et al. (2008) A central role for CK1 in catalyzing phosphorylation of the p53 transactivation domain at serine 20 after HHV-6B viral infection. J Biol Chem 283, 28563-73
18669630   Curated Info

33

Yan Y, et al. (2008) Gamma-irradiation-induced DNA damage checkpoint activation involves feedback regulation between extracellular signal-regulated kinase 1/2 and BRCA1. Cancer Res 68, 5113-21
18593910   Curated Info

34

Wang H, et al. (2008) An ATM- and Rad3-related (ATR) Signaling Pathway and a Phosphorylation-Acetylation Cascade Are Involved in Activation of p53/p21Waf1/Cip1 in Response to 5-Aza-2'-deoxycytidine Treatment. J Biol Chem 283, 2564-74
17977830   Curated Info

35

Kodym E, Kodym R, Choy H, Saha D (2008) Sustained metaphase arrest in response to ionizing radiation in a non-small cell lung cancer cell line. Radiat Res 169, 46-58
18159951   Curated Info

36

Shouse GP, Cai X, Liu X (2008) Serine 15 phosphorylation of p53 directs its interaction with B56gamma and the tumor suppressor activity of B56gamma-specific protein phosphatase 2A. Mol Cell Biol 28, 448-56
17967874   Curated Info

37

Sun L, et al. (2008) In GFP with high risk HPV-18E6 fusion protein expressed 293T and MCF-7 cells, the endogenous wild-type p53 could be transiently phosphorylated at multiple sites. J Exp Clin Cancer Res 27, 35
18778462   Curated Info

38

Gupta SK, et al. (2007) Human T-cell leukemia virus type 1 Tax oncoprotein prevents DNA damage-induced chromatin egress of hyperphosphorylated Chk2. J Biol Chem 282, 29431-40
17698850   Curated Info

39

Higashitsuji H, et al. (2007) Enhanced deacetylation of p53 by the anti-apoptotic protein HSCO in association with histone deacetylase 1. J Biol Chem 282, 13716-25
17353187   Curated Info

40

Craig AL, et al. (2007) The MDM2 ubiquitination signal in the DNA-binding domain of p53 forms a docking site for calcium calmodulin kinase superfamily members. Mol Cell Biol 27, 3542-55
17339337   Curated Info

41

Irish JM, et al. (2007) Flt3 Y591 duplication and Bcl-2 overexpression are detected in acute myeloid leukemia cells with high levels of phosphorylated wild-type p53. Blood 109, 2589-96
17105820   Curated Info

42

Carlessi L, et al. (2007) Biochemical and cellular characterization of VRX0466617, a novel and selective inhibitor for the checkpoint kinase Chk2. Mol Cancer Ther 6, 935-44
17363488   Curated Info

43

Yang W, et al. (2007) CARPs are ubiquitin ligases that promote MDM2-independent p53 and phospho-p53ser20 degradation. J Biol Chem 282, 3273-81
17121812   Curated Info

44

Liu Y, et al. (2007) Polo-like kinases inhibited by wortmannin. Labeling site and downstream effects. J Biol Chem 282, 2505-11
17135248   Curated Info

45

Li HH, et al. (2007) A specific PP2A regulatory subunit, B56gamma, mediates DNA damage-induced dephosphorylation of p53 at Thr55. EMBO J 26, 402-11
17245430   Curated Info

46

Burdick AD, Ivnitski-Steele ID, Lauer FT, Burchiel SW (2006) PYK2 mediates anti-apoptotic AKT signaling in response to benzo[a]pyrene diol epoxide in mammary epithelial cells. Carcinogenesis 27, 2331-40
16774943   Curated Info

47

Arnould S, et al. (2006) Time-dependent cytotoxicity induced by SJG-136 (NSC 694501): influence of the rate of interstrand cross-link formation on DNA damage signaling. Mol Cancer Ther 5, 1602-9
16818520   Curated Info

48

Mungamuri SK, Yang X, Thor AD, Somasundaram K (2006) Survival signaling by Notch1: mammalian target of rapamycin (mTOR)-dependent inhibition of p53. Cancer Res 66, 4715-24
16651424   Curated Info

49

Kaur M, Agarwal R, Agarwal C (2006) Grape seed extract induces anoikis and caspase-mediated apoptosis in human prostate carcinoma LNCaP cells: possible role of ataxia telangiectasia mutated-p53 activation. Mol Cancer Ther 5, 1265-74
16731759   Curated Info

50

Yoshida K, Liu H, Miki Y (2006) Protein kinase C delta regulates Ser46 phosphorylation of p53 tumor suppressor in the apoptotic response to DNA damage. J Biol Chem 281, 5734-40
16377624   Curated Info

51

Mayo LD, et al. (2005) Phosphorylation of human p53 at serine 46 determines promoter selection and whether apoptosis is attenuated or amplified. J Biol Chem 280, 25953-9
15843377   Curated Info

52

Chen Y, Miao ZH, Zhao WM, Ding J (2005) The p53 pathway is synergized by p38 MAPK signaling to mediate 11,11'-dideoxyverticillin-induced G2/M arrest. FEBS Lett 579, 3683-90
15963507   Curated Info

53

Li Z, et al. (2005) Function of polo-like kinase 3 in NF-kappaB-mediated proapoptotic response. J Biol Chem 280, 16843-50
15671037   Curated Info

54

Wang L, Dai W, Lu L (2005) Ultraviolet irradiation-induced K(+) channel activity involving p53 activation in corneal epithelial cells. Oncogene 24, 3020-7
15750624   Curated Info

55

Manke IA, et al. (2005) MAPKAP kinase-2 is a cell cycle checkpoint kinase that regulates the G2/M transition and S phase progression in response to UV irradiation. Mol Cell 17, 37-48
15629715   Curated Info

56

Kurz EU, Douglas P, Lees-Miller SP (2004) Doxorubicin activates ATM-dependent phosphorylation of multiple downstream targets in part through the generation of reactive oxygen species. J Biol Chem 279, 53272-81
15489221   Curated Info

57

Thompson T, et al. (2004) Phosphorylation of p53 on key serines is dispensable for transcriptional activation and apoptosis. J Biol Chem 279, 53015-22
15471885   Curated Info

58

Wang J, et al. (2004) ATM-dependent CHK2 activation induced by anticancer agent, irofulven. J Biol Chem 279, 39584-92
15269203   Curated Info

59

Caporali S, et al. (2004) DNA damage induced by temozolomide signals to both ATM and ATR: role of the mismatch repair system. Mol Pharmacol 66, 478-91
15322239   Curated Info

60

Boutell C, Everett RD (2004) Herpes simplex virus type 1 infection induces the stabilization of p53 in a USP7- and ATM-independent manner. J Virol 78, 8068-77
15254178   Curated Info

61

Jackson MW, et al. (2004) Limited role of N-terminal phosphoserine residues in the activation of transcription by p53. Oncogene 23, 4477-87
15064747   Curated Info

62

Mroz RM, et al. (2004) p53 N-terminal Ser-15 approximately P and Ser-20 approximately P levels in squamous cell lung cancer after radio/chemotherapy. Am J Respir Cell Mol Biol 30, 564-8
14527925   Curated Info

63

Powers JT, et al. (2004) E2F1 uses the ATM signaling pathway to induce p53 and Chk2 phosphorylation and apoptosis. Mol Cancer Res 2, 203-14
15140942   Curated Info

64

Kaeser MD, Pebernard S, Iggo RD (2004) Regulation of p53 stability and function in HCT116 colon cancer cells. J Biol Chem 279, 7598-605
14665630   Curated Info

65

Takagi M, et al. (2004) Identification and characterization of polymorphic variations of the ataxia telangiectasia mutated (ATM) gene in childhood Hodgkin disease. Blood 103, 283-90
12969974   Curated Info

66

Das KC, Dashnamoorthy R (2004) Hyperoxia activates the ATR-Chk1 pathway and phosphorylates p53 at multiple sites. Am J Physiol Lung Cell Mol Physiol 286, L87-97
12959929   Curated Info

67

Bronder JL, Moran RG (2003) A defect in the p53 response pathway induced by de novo purine synthesis inhibition. J Biol Chem 278, 48861-71
14517211   Curated Info

68

Williams SA, McConkey DJ (2003) The proteasome inhibitor bortezomib stabilizes a novel active form of p53 in human LNCaP-Pro5 prostate cancer cells. Cancer Res 63, 7338-44
14612532   Curated Info

69

Saito S, et al. (2003) Phosphorylation site interdependence of human p53 post-translational modifications in response to stress. J Biol Chem 278, 37536-44
12860987   Curated Info

70

Melnikova VO, Santamaria AB, Bolshakov SV, Ananthaswamy HN (2003) Mutant p53 is constitutively phosphorylated at Serine 15 in UV-induced mouse skin tumors: involvement of ERK1/2 MAP kinase. Oncogene 22, 5958-66
12955074   Curated Info

71

Louria-Hayon I, et al. (2003) The promyelocytic leukemia protein protects p53 from Mdm2-mediated inhibition and degradation. J Biol Chem 278, 33134-41
12810724   Curated Info

72

Goudelock DM, et al. (2003) Regulatory interactions between the checkpoint kinase Chk1 and the proteins of the DNA-dependent protein kinase complex. J Biol Chem 278, 29940-7
12756247   Curated Info

73

Lindström MS, Wiman KG (2003) Myc and E2F1 induce p53 through p14ARF-independent mechanisms in human fibroblasts. Oncogene 22, 4993-5005
12902982   Curated Info

74

Lee JH, et al. (2003) Distinct functions of Nijmegen breakage syndrome in ataxia telangiectasia mutated-dependent responses to DNA damage. Mol Cancer Res 1, 674-81
12861053   Curated Info

75

Pluquet O, et al. (2003) The cytoprotective aminothiol WR1065 activates p53 through a non-genotoxic signaling pathway involving c-Jun N-terminal kinase. J Biol Chem 278, 11879-87
12531896   Curated Info

76

Matsuoka M, Igisu H, Morimoto Y (2003) Phosphorylation of p53 protein in A549 human pulmonary epithelial cells exposed to asbestos fibers. Environ Health Perspect 111, 509-12
12676607   Curated Info

77

Wang C, Chen J (2003) Phosphorylation and hsp90 binding mediate heat shock stabilization of p53. J Biol Chem 278, 2066-71
12427754   Curated Info

78

Yu Q, et al. (2002) UCN-01 inhibits p53 up-regulation and abrogates gamma-radiation-induced G(2)-M checkpoint independently of p53 by targeting both of the checkpoint kinases, Chk2 and Chk1. Cancer Res 62, 5743-8
12384533   Curated Info

79

Kim SJ, et al. (2002) p38 kinase regulates nitric oxide-induced apoptosis of articular chondrocytes by accumulating p53 via NFkappa B-dependent transcription and stabilization by serine 15 phosphorylation. J Biol Chem 277, 33501-8
12091386   Curated Info

80

Saito S, et al. (2002) ATM mediates phosphorylation at multiple p53 sites, including Ser(46), in response to ionizing radiation. J Biol Chem 277, 12491-4
11875057   Curated Info

81

She QB, Ma WY, Dong Z (2002) Role of MAP kinases in UVB-induced phosphorylation of p53 at serine 20. Oncogene 21, 1580-9
11896587   Curated Info

82

Shono T, et al. (2002) Apoptosis induced by adenovirus-mediated p53 gene transfer in human glioma correlates with site-specific phosphorylation. Cancer Res 62, 1069-76
11861384   Curated Info

83

Miyakoda M, Suzuki K, Kodama S, Watanabe M (2002) Activation of ATM and phosphorylation of p53 by heat shock. Oncogene 21, 1090-6
11850826   Curated Info

84

Bean LJ, Stark GR (2002) Regulation of the accumulation and function of p53 by phosphorylation of two residues within the domain that binds to Mdm2. J Biol Chem 277, 1864-71
11707453   Curated Info

85

Xie S, et al. (2001) Plk3 functionally links DNA damage to cell cycle arrest and apoptosis at least in part via the p53 pathway. J Biol Chem 276, 43305-12
11551930   Curated Info

86

Kishi H, et al. (2001) Osmotic shock induces G1 arrest through p53 phosphorylation at Ser33 by activated p38MAPK without phosphorylation at Ser15 and Ser20. J Biol Chem 276, 39115-22
11495913   Curated Info

87

Dumaz N, Milne DM, Jardine LJ, Meek DW (2001) Critical roles for the serine 20, but not the serine 15, phosphorylation site and for the polyproline domain in regulating p53 turnover. Biochem J 359, 459-64
11583595   Curated Info

88

Xie S, et al. (2001) Reactive oxygen species-induced phosphorylation of p53 on serine 20 is mediated in part by polo-like kinase-3. J Biol Chem 276, 36194-9
11447225   Curated Info

89

Turenne GA, Paul P, Laflair L, Price BD (2001) Activation of p53 transcriptional activity requires ATM's kinase domain and multiple N-terminal serine residues of p53. Oncogene 20, 5100-10
11526498   Curated Info

90

Zhang Y, Xiong Y (2001) A p53 amino-terminal nuclear export signal inhibited by DNA damage-induced phosphorylation. Science 292, 1910-5
11397945   Curated Info

91

Minamoto T, et al. (2001) Distinct pattern of p53 phosphorylation in human tumors. Oncogene 20, 3341-7
11423984   Curated Info

92

Dornan D, Hupp TR (2001) Inhibition of p53-dependent transcription by BOX-I phospho-peptide mimetics that bind to p300. EMBO Rep 2, 139-44
11258706   Curated Info

93

Stewart ZA, Tang LJ, Pietenpol JA (2001) Increased p53 phosphorylation after microtubule disruption is mediated in a microtubule inhibitor- and cell-specific manner. Oncogene 20, 113-24
11244509   Curated Info

94

Jabbur JR, Huang P, Zhang W (2000) DNA damage-induced phosphorylation of p53 at serine 20 correlates with p21 and Mdm-2 induction in vivo. Oncogene 19, 6203-8
11175334   Curated Info

95

Oda K, et al. (2000) p53AIP1, a potential mediator of p53-dependent apoptosis, and its regulation by Ser-46-phosphorylated p53. Cell 102, 849-62
11030628   Curated Info

96

Sakaguchi K, et al. (2000) Damage-mediated phosphorylation of human p53 threonine 18 through a cascade mediated by a casein 1-like kinase. Effect on Mdm2 binding. J Biol Chem 275, 9278-83
10734067   Curated Info

97

Hirao A, et al. (2000) DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science 287, 1824-7
10710310   Curated Info

98

Buschmann T, et al. (2000) p53 phosphorylation and association with murine double minute 2, c-Jun NH2-terminal kinase, p14ARF, and p300/CBP during the cell cycle and after exposure to ultraviolet irradiation. Cancer Res 60, 896-900
10706102   Curated Info

99

Chehab NH, Malikzay A, Appel M, Halazonetis TD (2000) Chk2/hCds1 functions as a DNA damage checkpoint in G(1) by stabilizing p53. Genes Dev 14, 278-88
10673500   Curated Info

100

Shieh SY, et al. (2000) The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites. Genes Dev 14, 289-300
10673501   Curated Info

101

Abraham J, Kelly J, Thibault P, Benchimol S (2000) Post-translational modification of p53 protein in response to ionizing radiation analyzed by mass spectrometry. J Mol Biol 295, 853-64
10656795   Curated Info

102

Chehab NH, Malikzay A, Stavridi ES, Halazonetis TD (1999) Phosphorylation of Ser-20 mediates stabilization of human p53 in response to DNA damage. Proc Natl Acad Sci U S A 96, 13777-82
10570149   Curated Info

103

Shieh SY, Taya Y, Prives C (1999) DNA damage-inducible phosphorylation of p53 at N-terminal sites including a novel site, Ser20, requires tetramerization. EMBO J 18, 1815-23
10202145   Curated Info

104

Ullrich SJ, et al. (1993) Phosphorylation at Ser-15 and Ser-392 in mutant p53 molecules from human tumors is altered compared to wild-type p53. Proc Natl Acad Sci U S A 90, 5954-8
8327466   Curated Info

105

Tian H, Faje AT, Lee SL, Jorgensen TJ Radiation-induced phosphorylation of Chk1 at S345 is associated with p53-dependent cell cycle arrest pathways. Neoplasia 4, 171-80
11896572   Curated Info