Ser14
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.5.9.3
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser14  -  STX1A (human)

Site Information
ELRTAKDsDDDDDVA   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 451261

In vivo Characterization
Methods used to characterize site in vivo:
mass spectrometry ( 1 , 2 , 4 , 6 , 8 , 9 , 11 , 12 ) , mutation of modification site ( 10 ) , phospho-antibody ( 3 , 10 ) , western blotting ( 3 , 10 )
Disease tissue studied:
Alzheimer's disease ( 11 ) , ASD autism spectrum ( 3 ) , adrenal cancer ( 10 ) , pheochromocytoma ( 10 ) , breast cancer ( 6 ) , HER2 positive breast cancer ( 1 ) , luminal A breast cancer ( 1 ) , luminal B breast cancer ( 1 ) , breast cancer, surrounding tissue ( 1 ) , breast cancer, triple negative ( 1 ) , lung cancer ( 4 , 6 ) , non-small cell lung cancer ( 6 ) , non-small cell lung adenocarcinoma ( 4 ) , neuroblastoma ( 10 ) , melanoma skin cancer ( 2 )
Relevant cell line - cell type - tissue:

Upstream Regulation
Putative in vivo kinases:
CK2A1 (human) ( 10 )
Kinases, in vitro:
CK2A1 (human) ( 10 )
Treatments:
TBB ( 3 )

Downstream Regulation
Effects of modification on STX1A:
molecular association, regulation ( 3 , 10 )
Effects of modification on biological processes:
exocytosis, altered ( 10 )
Induce interaction with:
DAT (human) ( 3 )
Inhibit interaction with:
STXBP1 (human) ( 10 )

References 

1

Mertins P, et al. (2016) Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534, 55-62
27251275   Curated Info

2

Stuart SA, et al. (2015) A Phosphoproteomic Comparison of B-RAFV600E and MKK1/2 Inhibitors in Melanoma Cells. Mol Cell Proteomics 14, 1599-615
25850435   Curated Info

3

Cartier E, et al. (2015) Rare autism-associated variants implicate syntaxin 1 (STX1 R26Q) phosphorylation and the dopamine transporter (hDAT R51W) in dopamine neurotransmission and behaviors. EBioMedicine 2, 135-146
25774383   Curated Info

4

Schweppe DK, Rigas JR, Gerber SA (2013) Quantitative phosphoproteomic profiling of human non-small cell lung cancer tumors. J Proteomics 91, 286-96
23911959   Curated Info

5

Shiromizu T, et al. (2013) Identification of missing proteins in the neXtProt database and unregistered phosphopeptides in the PhosphoSitePlus database as part of the Chromosome-centric Human Proteome Project. J Proteome Res 12, 2414-21
23312004   Curated Info

6

Klammer M, et al. (2012) Phosphosignature predicts dasatinib response in non-small cell lung cancer. Mol Cell Proteomics 11, 651-68
22617229   Curated Info

7

Beli P, et al. (2012) Proteomic Investigations Reveal a Role for RNA Processing Factor THRAP3 in the DNA Damage Response. Mol Cell 46, 212-25
22424773   Curated Info

8

Kettenbach AN, et al. (2011) Quantitative phosphoproteomics identifies substrates and functional modules of aurora and polo-like kinase activities in mitotic cells. Sci Signal 4, rs5
21712546   Curated Info

9

Schreiber TB, et al. (2010) An integrated phosphoproteomics work flow reveals extensive network regulation in early lysophosphatidic acid signaling. Mol Cell Proteomics 9, 1047-62
20071362   Curated Info

10

Rickman C, Duncan RR (2010) Munc18/Syntaxin interaction kinetics control secretory vesicle dynamics. J Biol Chem 285, 3965-72
19748891   Curated Info

11

Xia Q, et al. (2008) Phosphoproteomic analysis of human brain by calcium phosphate precipitation and mass spectrometry. J Proteome Res 7, 2845-51
18510355   Curated Info

12

DeGiorgis JA, et al. (2005) Phosphoproteomic analysis of synaptosomes from human cerebral cortex. J Proteome Res 4, 306-15
15822905   Curated Info