Ser379
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.5.8
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser379  -  Chk2 (human)

Site Information
skILGEtsLMRtLCG   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 981401

In vivo Characterization
Methods used to characterize site in vivo:
[32P] bio-synthetic labeling ( 9 ) , electrophoretic mobility shift ( 9 ) , immunoprecipitation ( 12 ) , mass spectrometry ( 1 , 3 , 4 , 6 , 7 , 8 , 10 , 12 ) , mass spectrometry (in vitro) ( 11 ) , mutation of modification site ( 7 , 9 , 12 ) , phospho-antibody ( 7 , 9 ) , phosphopeptide mapping ( 9 , 10 ) , western blotting ( 7 , 9 , 12 )
Disease tissue studied:
bone cancer ( 9 ) , breast cancer ( 4 ) , lung cancer ( 1 , 4 ) , non-small cell lung cancer ( 4 ) , non-small cell lung adenocarcinoma ( 1 )
Relevant cell line - cell type - tissue:

Upstream Regulation
Regulatory protein:
Tax (retrovirus) ( 12 )
Putative in vivo kinases:
Chk2 (human) ( 9 )
Kinases, in vitro:
Chk2 (human) ( 9 , 10 )
Treatments:
ionizing_radiation ( 7 , 9 , 12 )

Downstream Regulation
Effects of modification on Chk2:
enzymatic activity, induced ( 7 ) , intracellular localization ( 7 ) , ubiquitination ( 7 , 9 )
Effects of modification on biological processes:
apoptosis, induced ( 9 )

References 

1

Schweppe DK, Rigas JR, Gerber SA (2013) Quantitative phosphoproteomic profiling of human non-small cell lung cancer tumors. J Proteomics 91, 286-96
23911959   Curated Info

2

Shiromizu T, et al. (2013) Identification of missing proteins in the neXtProt database and unregistered phosphopeptides in the PhosphoSitePlus database as part of the Chromosome-centric Human Proteome Project. J Proteome Res 12, 2414-21
23312004   Curated Info

3

Zhou H, et al. (2013) Toward a comprehensive characterization of a human cancer cell phosphoproteome. J Proteome Res 12, 260-71
23186163   Curated Info

4

Klammer M, et al. (2012) Phosphosignature predicts dasatinib response in non-small cell lung cancer. Mol Cell Proteomics 11, 651-68
22617229   Curated Info

5

Beli P, et al. (2012) Proteomic Investigations Reveal a Role for RNA Processing Factor THRAP3 in the DNA Damage Response. Mol Cell 46, 212-25
22424773   Curated Info

6

Hegemann B, et al. (2011) Systematic phosphorylation analysis of human mitotic protein complexes. Sci Signal 4, rs12
22067460   Curated Info

7

Guo X, et al. (2010) Interdependent phosphorylation within the kinase domain T-loop Regulates CHK2 activity. J Biol Chem 285, 33348-57
20713355   Curated Info

8

Zhou J (2009) CST Curation Set: 7594; Year: 2009; Biosample/Treatment: cell line, HeLa/untreated; Disease: cervical adenocarcinoma; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[ST]P
Curated Info

9

Lovly CM, et al. (2008) Regulation of Chk2 ubiquitination and signaling through autophosphorylation of serine 379. Mol Cell Biol 28, 5874-85
18644861   Curated Info

10

Gabant G, et al. (2008) Autophosphorylated residues involved in the regulation of human chk2 in vitro. J Mol Biol 380, 489-503
18538787   Curated Info

11

Kass EM, et al. (2007) Stability of checkpoint kinase 2 is regulated via phosphorylation at serine 456. J Biol Chem 282, 30311-21
17715138   Curated Info

12

Gupta SK, et al. (2007) Human T-cell leukemia virus type 1 Tax oncoprotein prevents DNA damage-induced chromatin egress of hyperphosphorylated Chk2. J Biol Chem 282, 29431-40
17698850   Curated Info