Ser177
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.7.1.1
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser177  -  IKKB (mouse)

Site Information
AKELDQGsLCTsFVG   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 447492

In vivo Characterization
Methods used to characterize site in vivo:
immunoassay ( 2 ) , immunoprecipitation ( 4 ) , mutation of modification site ( 1 , 4 , 6 , 10 ) , phospho-antibody ( 1 , 2 , 3 , 4 , 5 , 8 , 9 , 10 , 11 ) , western blotting ( 1 , 2 , 3 , 4 , 5 , 8 , 9 , 10 , 11 )
Disease tissue studied:
leukemia ( 1 ) , acute myelogenous leukemia ( 1 )
Relevant cell line - cell type - tissue:
293 (epithelial) ( 4 ) , aorta ( 2 ) , BV2 (microglia) ( 3 ) , colon ( 5 , 9 , 11 ) , HEK293T (epithelial) ( 1 , 2 ) , HeLa (cervical) ( 4 ) , macrophage ( 10 ) , macrophage-peritoneum ( 1 , 2 ) , MEF (fibroblast) ( 6 ) , microvessel endothelial-lung ( 8 ) , monocyte ( 10 ) , mononuclear-blood ( 1 ) , osteoclast ( 10 ) , RAW 264.7 (macrophage) ( 1 ) , THP1 (myeloid) ( 1 )

Upstream Regulation
Regulatory protein:
FADD (human) ( 3 ) , ILK (mouse) ( 5 ) , SNX8 (mouse) ( 4 )
Putative in vivo kinases:
AMPKA2 (mouse) ( 8 ) , DCAMKL1 (human) ( 1 , 2 )
Kinases, in vitro:
DCAMKL1 (human) ( 1 )
Treatments:
bacterial infection ( 9 , 11 ) , bortezomib ( 11 ) , DCLK1-IN-1 ( 2 ) , IFN-gamma ( 4 ) , LDL_oxidized ( 2 ) , LPS ( 1 , 3 ) , LRRK2-IN-1 ( 1 ) , Necrostatin-1 ( 3 ) , nitric_oxide ( 7 ) , PD98059 ( 9 ) , RANKL ( 10 ) , siRNA ( 1 ) , TAK1-IN-2 ( 1 ) , TNF ( 3 , 10 ) , Z-VAD-FMK ( 3 )

Downstream Regulation
Effects of modification on IKKB:
activity, induced ( 2 ) , enzymatic activity, induced ( 10 ) , intracellular localization ( 2 ) , phosphorylation ( 1 , 6 )
Effects of modification on biological processes:
cell differentiation, induced ( 10 ) , transcription, induced ( 1 , 2 )

References 

1

Luo W, et al. (2023) Doublecortin-like kinase 1 activates NF-κB to induce inflammatory responses by binding directly to IKKβ. Cell Death Differ
36914767   Curated Info

2

Huang Z, et al. (2023) Macrophage DCLK1 promotes atherosclerosis via binding to IKKβ and inducing inflammatory responses. EMBO Mol Med, e17198
36896602   Curated Info

3

Huang X, et al. (2021) Caspase inhibition prolongs inflammation by promoting a signaling complex with activated RIPK1. J Cell Biol 220
33914027   Curated Info

4

Wei J, et al. (2017) SNX8 mediates IFNγ-triggered noncanonical signaling pathway and host defense against Listeria monocytogenes. Proc Natl Acad Sci U S A 114, 13000-13005
29180417   Curated Info

5

Ahmed AU, et al. (2017) Integrin-Linked Kinase Expression in Myeloid Cells Promotes Inflammatory Signaling during Experimental Colitis. J Immunol
28794235   Curated Info

6

Yan J, et al. (2013) Inactivation of BAD by IKK inhibits TNFα-induced apoptosis independently of NF-κB activation. Cell 152, 304-15
23332762   Curated Info

7

Sarkar S, et al. (2011) Complex inhibitory effects of nitric oxide on autophagy. Mol Cell 43, 19-32
21726807   Curated Info

8

Bess E, Fisslthaler B, Frömel T, Fleming I (2011) Nitric oxide-induced activation of the AMP-activated protein kinase α2 subunit attenuates IκB kinase activity and inflammatory responses in endothelial cells. PLoS One 6, e20848
21673972   Curated Info

9

Chandrakesan P, et al. (2010) Novel changes in NF-{kappa}B activity during progression and regression phases of hyperplasia: role of MEK, ERK, and p38. J Biol Chem 285, 33485-98
20710027   Curated Info

10

Darwech I, Otero JE, Alhawagri MA, Abu-Amer Y (2010) Tyrosine phosphorylation is required for IkappaB kinase-beta (IKKbeta) activation and function in osteoclastogenesis. J Biol Chem 285, 25522-30
20534585   Curated Info

11

Wang Y, Xiang GS, Kourouma F, Umar S (2006) Citrobacter rodentium-induced NF-kappaB activation in hyperproliferating colonic epithelia: role of p65 (Ser536) phosphorylation. Br J Pharmacol 148, 814-24
16751795   Curated Info