|
Powered by Cell Signaling Technology |
Site Information |
---|
SYAGGrGsyGDLGGP SwissProt Entrez-Gene |
Blast this site against: NCBI SwissProt PDB |
Site Group ID: 483629 |
In vivo Characterization | |
---|---|
Methods used to characterize site in vivo: | |
Disease tissue studied: | |
Relevant cell line - cell type - tissue: |
Upstream Regulation | |
---|---|
Treatments: |
References | |
---|---|
Kim HJ, et al. (2017) Heterogeneous nuclear ribonucleoprotein K inhibits heat shock-induced transcriptional activity of heat shock factor 1. J Biol Chem 292, 12801-12812
28592492 Curated Info |
|
Robles MS, Humphrey SJ, Mann M (2017) Phosphorylation Is a Central Mechanism for Circadian Control of Metabolism and Physiology. Cell Metab 25, 118-127
27818261 Curated Info |
|
Sacco F, et al. (2016) Glucose-regulated and drug-perturbed phosphoproteome reveals molecular mechanisms controlling insulin secretion. Nat Commun 7, 13250
27841257 Curated Info |
|
Reinartz M, Raupach A, Kaisers W, Gödecke A (2014) AKT1 and AKT2 induce distinct phosphorylation patterns in HL-1 cardiac myocytes. J Proteome Res 13, 4232-45
25162660 Curated Info |
|
Mertins P, et al. (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol Cell Proteomics 13, 1690-704
24719451 Curated Info |
|
Humphrey SJ, et al. (2013) Dynamic Adipocyte Phosphoproteome Reveals that Akt Directly Regulates mTORC2. Cell Metab 17, 1009-20
23684622 Curated Info |
|
Lundby A, et al. (2013) In vivo phosphoproteomics analysis reveals the cardiac targets of β-adrenergic receptor signaling. Sci Signal 6, rs11
23737553 Curated Info |
|
Wu X, et al. (2012) Investigation of receptor interacting protein (RIP3)-dependent protein phosphorylation by quantitative phosphoproteomics. Mol Cell Proteomics 11, 1640-51
22942356 Curated Info |
|
Trinidad JC, et al. (2012) Global identification and characterization of both O-GlcNAcylation and phosphorylation at the murine synapse. Mol Cell Proteomics 11, 215-29
22645316 Curated Info |
|
Hsu PP, et al. (2011) The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332, 1317-22
21659604 Curated Info |
|
Manes NP, et al. (2011) Discovery of mouse spleen signaling responses to anthrax using label-free quantitative phosphoproteomics via mass spectrometry. Mol Cell Proteomics 10, M110.000927
21189417 Curated Info |
|
Wiśniewski JR, et al. (2010) Brain phosphoproteome obtained by a FASP-based method reveals plasma membrane protein topology. J Proteome Res 9, 3280-9
20415495 Curated Info |
|
Choudhary C, et al. (2009) Mislocalized activation of oncogenic RTKs switches downstream signaling outcomes. Mol Cell 36, 326-39
19854140 Curated Info |
|
Zanivan S, et al. (2008) Solid tumor proteome and phosphoproteome analysis by high resolution mass spectrometry. J Proteome Res 7, 5314-26
19367708 Curated Info |
|
Pan C, Gnad F, Olsen JV, Mann M (2008) Quantitative phosphoproteome analysis of a mouse liver cell line reveals specificity of phosphatase inhibitors. Proteomics 8, 4534-46
18846507 Curated Info |