Thr68
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.5.9.3
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Thr68  -  Chk2 (human)

Site Information
SsLEtVstQELYsIP   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 447491

In vivo Characterization
Methods used to characterize site in vivo:
2D analysis ( 162 ) , [32P] bio-synthetic labeling ( 81 , 130 , 148 , 149 , 157 , 160 , 162 , 163 ) , electrophoretic mobility shift ( 81 , 117 , 124 , 141 , 157 , 158 , 163 ) , flow cytometry ( 5 , 11 , 55 , 113 ) , immunoassay ( 37 ) , immunoprecipitation ( 3 , 8 , 10 , 11 , 20 , 28 , 36 , 39 , 54 , 55 , 70 , 71 , 76 , 78 , 91 , 157 ) , mass spectrometry ( 3 , 71 , 91 , 101 ) , microscopy-colocalization with upstream kinase ( 94 ) , mutation of modification site ( 3 , 10 , 11 , 13 , 28 , 54 , 58 , 71 , 76 , 78 , 81 , 91 , 104 , 113 , 144 , 147 , 148 , 149 , 152 , 158 , 159 , 160 , 162 , 163 , 164 ) , peptide sequencing ( 148 ) , phospho-antibody ( 3 , 4 , 5 , 6 , 7 , 8 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 31 , 32 , 33 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64 , 65 , 66 , 67 , 69 , 70 , 71 , 72 , 73 , 74 , 75 , 76 , 78 , 79 , 80 , 81 , 82 , 83 , 84 , 85 , 86 , 87 , 88 , 89 , 90 , 92 , 94 , 95 , 96 , 97 , 98 , 99 , 100 , 101 , 102 , 103 , 104 , 105 , 106 , 107 , 108 , 110 , 111 , 112 , 113 , 114 , 116 , 117 , 118 , 119 , 120 , 121 , 122 , 123 , 124 , 125 , 126 , 127 , 128 , 129 , 130 , 131 , 132 , 133 , 134 , 135 , 136 , 137 , 138 , 139 , 140 , 141 , 142 , 143 , 144 , 146 , 147 , 148 , 149 , 150 , 151 , 153 , 154 , 155 , 156 , 157 , 158 , 159 , 160 , 161 , 162 , 164 , 165 ) , phosphopeptide mapping ( 81 , 149 ) , western blotting ( 3 , 4 , 5 , 6 , 7 , 8 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 31 , 32 , 33 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64 , 65 , 67 , 69 , 70 , 71 , 72 , 73 , 74 , 75 , 76 , 78 , 79 , 80 , 81 , 82 , 83 , 84 , 85 , 86 , 87 , 88 , 89 , 90 , 91 , 92 , 95 , 96 , 97 , 98 , 99 , 100 , 101 , 102 , 103 , 105 , 106 , 107 , 108 , 111 , 112 , 113 , 114 , 116 , 119 , 120 , 124 , 125 , 129 , 138 , 140 , 141 , 146 , 153 , 161 , 165 )
Disease tissue studied:
ataxia-telangiectasia ( 59 , 82 , 85 , 124 , 127 , 129 , 165 ) , bladder cancer ( 131 ) , bone cancer ( 8 , 10 , 11 , 20 , 24 , 26 , 31 , 37 , 41 , 42 , 44 , 45 , 61 , 71 , 73 , 78 , 81 , 84 , 105 , 107 , 114 ) , Ewing's sarcoma ( 24 ) , brain cancer ( 56 , 124 ) , glioblastoma ( 56 , 124 ) , glioma ( 56 , 124 ) , breast cancer ( 13 , 16 , 17 , 21 , 28 , 57 , 60 , 66 , 78 , 86 , 89 , 106 , 108 , 114 , 156 ) , cervical cancer ( 33 , 67 ) , cervical adenocarcinoma ( 33 , 67 ) , colorectal cancer ( 3 , 10 , 23 , 27 , 28 , 50 , 82 , 85 , 89 , 96 , 119 , 120 , 138 ) , colorectal carcinoma ( 3 , 10 , 23 , 27 , 28 , 50 , 82 , 85 , 89 , 96 , 119 , 120 , 138 ) , leukemia ( 4 , 7 , 16 , 47 , 69 , 125 ) , acute lymphocytic leukemia ( 69 ) , acute myelogenous leukemia ( 125 ) , chronic myelogenous leukemia ( 47 ) , T cell leukemia ( 4 , 7 ) , lung cancer ( 28 , 31 , 72 , 85 , 90 , 108 , 111 , 127 , 138 , 156 ) , non-small cell lung cancer ( 28 , 31 , 72 , 90 , 111 , 127 , 138 ) , non-small cell lung adenocarcinoma ( 28 , 31 , 90 ) , small-cell lung cancer ( 28 ) , lymphoma ( 54 ) , B cell lymphoma ( 54 ) , non-Hodgkin's lymphoma ( 54 ) , pancreatic cancer ( 16 , 51 , 62 ) , pancreatic carcinoma ( 16 , 51 , 62 ) , prostate cancer ( 15 , 17 , 89 , 103 , 112 , 116 ) , melanoma skin cancer ( 98 ) , fibrosarcoma of soft tissue ( 14 , 113 ) , testicular cancer ( 38 ) , Nijmegen Breakage Syndrome ( 82 , 124 )
Relevant cell line - cell type - tissue:
293 (epithelial) ( 6 , 10 , 54 , 58 , 75 , 81 , 91 , 117 , 124 , 143 , 148 , 149 ) , 32D (myeloid) [IRS1 (mouse)] ( 125 ) , A253 ( 140 ) , A2780 (ovarian) ( 133 , 142 ) , A549 (pulmonary) ( 28 , 31 , 85 , 108 , 127 ) , AG01522 (fibroblast) ( 79 ) , AG04405 (fibroblast) ( 165 ) , AT1ABR (lymphoblastoid) ( 129 ) , AT22IJE-T (fibroblast) ( 117 ) , AT52RM (lymphoblastoid) ( 59 , 104 ) , AT5BIVA (fibroblast) ( 151 ) , ATLD2 (fibroblast) ( 82 ) , BJ (fibroblast) ( 61 ) , bladder ( 131 ) , BT (epithelial) ( 129 , 161 ) , C2C12 (myoblast) ( 141 ) , C3ABR (lymphoblastoid) ( 129 , 161 , 165 ) , Caov-3 (ovarian) ( 133 ) , CHO (fibroblast) ( 96 , 124 ) , COS (fibroblast) ( 33 ) , DLD1 (intestinal) ( 3 , 23 , 119 ) , DU 145 (prostate cell) ( 15 , 103 ) , dysplastic nevus ( 122 ) , E.coli (bacterial) ( 83 , 101 ) , embryo ( 87 ) , ES8 ( 24 ) , Farage (B lymphocyte) ( 54 ) , fibroblast ( 65 , 102 , 124 ) , fibroblast-foreskin ( 48 , 88 ) , germ cell-testis ( 38 ) , GM00536 (lymphoblast) ( 16 , 85 , 127 ) , GM00637 (lymphoblast) ( 82 , 121 , 134 ) , GM01526 (lymphoblast) ( 85 , 127 ) , GM03395 (fibroblast) ( 150 ) , GM03440 (fibroblast) ( 150 ) , GM07078 (lymphoblastoid) ( 59 , 104 ) , HaCaT (keratinocyte) ( 72 ) , HCC1937 (breast cell) ( 114 , 139 ) , HCC2279 (pulmonary) ( 90 ) , HCT116 (intestinal) ( 3 , 10 , 23 , 27 , 28 , 50 , 82 , 85 , 89 , 110 , 120 , 130 , 138 , 143 , 144 , 154 , 155 ) , HCT15 (intestinal) ( 96 , 148 , 152 , 158 ) , HEC-59 (endometrial) ( 154 ) , HEK293T (epithelial) ( 8 , 11 , 13 , 70 , 76 , 78 , 84 , 108 , 126 , 139 , 151 , 157 , 158 , 159 , 160 , 162 , 164 ) , HeLa (cervical) ( 8 , 11 , 12 , 25 , 32 , 35 , 40 , 46 , 54 , 55 , 61 , 63 , 64 , 78 , 84 , 87 , 92 , 119 , 126 , 144 , 147 , 149 , 153 , 159 , 163 ) , HeLa S3 (cervical) ( 33 , 67 ) , hepatocyte-liver ( 80 ) , HFF1 (fibroblast) ( 31 ) , HL60 (myeloid) ( 16 ) , HT-29 (intestinal) ( 28 , 82 ) , HT1080 (fibroblast) ( 14 , 113 , 151 ) , hTERT normal human urothelia ( 22 ) , IMR-90 (fibroblast) ( 3 , 63 , 74 , 76 , 89 ) , Jurkat (T lymphocyte) ( 7 , 100 ) , K562 (erythroid) ( 47 , 152 ) , L3 (lymphoblastoid) ( 165 ) , LBC-N ( 104 ) , LCL (lymphoblastoid) ( 59 , 97 , 132 ) , LNCaP (prostate cell) ( 17 , 112 , 126 ) , lung ( 122 ) , lymphoblastoid ( 65 , 102 ) , lymphocyte ( 49 , 82 ) , lymphocyte-blood ( 5 ) , M059J (glial) ( 124 ) , M059K (glial) ( 56 , 124 ) , MCF-10A (breast cell) ( 89 ) , MCF-7 (breast cell) ( 13 , 16 , 21 , 28 , 57 , 60 , 66 , 78 , 86 , 95 , 106 , 108 , 126 , 139 ) , MCF10A1 (epithelial) ( 21 ) , MDA-MB-231 (breast cell) ( 13 , 17 ) , MEF (fibroblast) ( 11 , 52 , 81 , 82 , 92 , 102 , 107 ) , MEF (fibroblast) [IGF1R (mouse)] ( 149 , 164 ) , MIA PaCa (pancreatic) ( 62 ) , MIA PaCa-2 (pancreatic) ( 51 ) , MOLT-4 (T lymphocyte) ( 4 ) , MRC5 (fibroblast) ( 61 , 76 , 111 , 165 ) , MSN (neuron) ( 137 ) , MT1 (lymphoblastoid) ( 136 ) , myoblast ( 141 ) , myocyte ( 141 ) , NALM6 (B lymphocyte) ( 69 ) , NBS-ILB1 (fibroblast) ( 39 , 59 , 123 , 134 ) , NCI-H1299 (pulmonary) ( 72 , 127 , 138 ) , NCI-H146 (pulmonary) ( 28 ) , NCI-H358 (pulmonary) ( 111 ) , NHBE (epithelial) ( 111 ) , NHDF (fibroblast) ( 65 , 147 ) , NHF (fibroblast) ( 65 , 146 ) , OVCAR3 (ovarian) ( 118 , 133 ) , PANC-1 (pancreatic) ( 16 ) , PC3 (prostate cell) ( 89 , 116 , 143 ) , PSNF5 (fibroblast) ( 94 ) , PSNG13 (fibroblast) ( 94 ) , reticulocyte ( 157 ) , RKO (intestinal) ( 135 ) , Saos-2 (bone cell) ( 107 , 156 ) , SF9 ( 83 , 148 ) , SH-SY5Y (neural crest) ( 162 ) , SHEP (neuron) ( 137 ) , SK-N-MC (neural crest) ( 137 ) , skin ( 122 ) , SKNSH (neural crest) ( 147 , 156 ) , SKOV-3 (ovarian) ( 133 ) , SU-DHL-6 (B lymphocyte) ( 54 ) , SW480 (intestinal) ( 156 ) , T-CAM2 (testicular) ( 38 ) , TK6 (lymphoblastoid) ( 136 ) , U2OS (bone cell) [GR (human)] ( 126 , 127 , 128 , 130 , 136 , 139 , 147 , 151 , 156 , 159 , 160 ) , U2OS (bone cell) ( 8 , 10 , 11 , 20 , 26 , 31 , 37 , 41 , 42 , 44 , 45 , 61 , 71 , 73 , 78 , 81 , 84 , 105 , 114 ) , UT-7 (myeloid) ( 125 ) , WI-38 (fibroblast) ( 151 ) , WM115 (melanocyte) ( 98 ) , YZ5 ( 159 )

Upstream Regulation
Regulatory protein:
Abl (mouse) ( 52 ) , Akt1 (human) ( 3 ) , ATM (human) ( 53 , 78 , 85 , 99 , 102 , 111 , 113 ) , ATR (human) ( 31 , 53 , 102 ) , Bcl-2 (human) ( 106 ) , BLM (human) ( 94 ) , BMI1 (human) ( 21 ) , BRCA1 (human) ( 86 ) , BRD8 (human) ( 45 ) , CDT1 (human) ( 44 ) , Chk1 (human) ( 53 , 68 ) , Chk2 (human) ( 59 , 97 , 108 , 119 ) , claspin (human) ( 145 ) , CtIP (human) ( 73 ) , DNAPK (human) ( 40 , 53 ) , E2F1 (human) ( 146 ) , ERK1 (human) ( 57 ) , ERK2 (human) ( 57 ) , FBXW7 (human) ( 23 ) , Geminin (human) ( 138 ) , HMGA2 (human) ( 14 ) , HRas (human) ( 3 ) , HSPA2 (human) ( 89 ) , KIBRA (human) ( 13 ) , MPG (human) ( 78 ) , NBS1 (human) ( 39 ) , NCK1 (human) ( 92 ) , OBFC2B (human) ( 88 ) , p16-INK4A iso5 (human) ( 111 ) , p53 (human) ( 120 ) , PDE1A (human) ( 39 ) , PIN1 (human) ( 32 ) , PINX1 (human) ( 32 ) , PPM1D (mouse) ( 107 ) , PPP4C (human) ( 84 ) , PTEN (human) ( 3 ) , RAD17 (human) ( 31 ) , SMEK2 (human) ( 84 ) , SOCS1 (human) ( 74 ) , SOCS7 (human) ( 92 ) , Tax (retrovirus) ( 91 ) , TERT (human) ( 32 ) , Tip60 (human) ( 111 ) , TRF1 (human) ( 32 )
Putative in vivo kinases:
ATM (human) ( 4 , 46 , 63 , 104 , 115 , 127 , 136 , 147 , 150 , 159 , 160 , 161 , 163 , 164 , 165 ) , ATR (human) ( 127 ) , Chk2 (human) ( 158 ) , PLK1 (human) ( 71 , 151 ) , ZAK (human) ( 130 )
Kinases, in vitro:
ATM (human) ( 159 , 161 , 162 , 163 , 164 , 165 ) , ATR (human) ( 164 ) , Chk2 (human) ( 81 , 117 , 149 , 157 , 158 ) , DNAPK (human) ( 124 ) , PLK1 (human) ( 151 ) , TTK (human) ( 126 ) , ZAK (human) ( 130 )
Putative upstream phosphatases:
PPM1D (human) ( 59 , 96 , 108 ) , PPP1CA (human) ( 59 ) , PPP2CA (human) ( 59 )
Phosphatases, in vitro:
PPM1D (human) ( 96 , 108 )
Treatments:
11,11'-dideoxyverticillin ( 120 ) , 4-nitroquinoline_1-oxide ( 104 ) , adriamycin ( 45 , 52 , 69 , 70 , 117 , 129 ) , aminothiazole_compound_25 ( 142 ) , AP20187 ( 117 ) , AZ20 ( 37 ) , AZD7762 ( 62 ) , BI2536 ( 71 ) , C-1027 ( 99 ) , caffeine ( 33 , 50 , 93 , 104 , 118 , 135 , 141 , 161 , 165 ) , camptothecin ( 8 , 42 , 50 , 73 , 117 , 124 , 159 ) , CBP-93872 ( 28 ) , Chk2_inhibitor_II ( 54 ) , colforsin ( 69 ) , cyclophosphamide ( 111 ) , DNA-PK_inhibitor_II ( 124 ) , doxycycline ( 127 ) , DSBs ( 95 ) , Et743 ( 12 , 82 ) , etoposide ( 21 , 26 , 30 , 54 , 57 , 65 , 67 , 105 , 125 , 161 ) , eusynstyelamide B ( 17 ) , galiellalactone ( 15 ) , gemcitabine ( 62 ) , genistein ( 161 ) , Go_6976 ( 22 , 87 ) , grape_seed_extract ( 103 , 112 ) , H2O2 ( 38 , 78 ) , herbimycin_A ( 161 ) , hydroxyurea ( 35 , 37 , 41 , 70 , 84 , 102 , 104 , 164 ) , hyperoxia ( 85 ) , IBMX ( 69 ) , IC86621 ( 40 ) , ICRF-193 ( 63 , 65 ) , ionizing_radiation ( 4 , 16 , 25 , 28 , 31 , 45 , 46 , 47 , 54 , 55 , 58 , 59 , 60 , 61 , 62 , 64 , 70 , 71 , 76 , 78 , 79 , 81 , 86 , 87 , 88 , 89 , 90 , 91 , 93 , 95 , 96 , 97 , 104 , 107 , 108 , 113 , 114 , 115 , 117 , 121 , 123 , 124 , 126 , 127 , 130 , 132 , 134 , 139 , 141 , 143 , 145 , 147 , 153 , 154 , 156 , 158 , 159 , 160 , 161 , 163 , 164 , 165 ) , irofulven ( 133 ) , KU-55933 ( 22 , 28 , 33 , 49 , 56 , 59 , 72 , 75 , 97 ) , KU-60019 ( 16 , 25 ) , lurbinectedin ( 12 ) , methylselenocysteine ( 140 ) , MG132 ( 45 ) , mimosine ( 33 ) , mitomycin_C ( 70 ) , mitoxantrone ( 35 ) , MMS ( 28 , 75 , 78 ) , Na(2)CrO(4) ( 150 ) , NAC ( 129 ) , nelfinavir ( 98 ) , neocarzinostatin ( 155 ) , nocodazole ( 46 , 71 ) , NU7026 ( 25 , 64 ) , NU7441 ( 7 ) , okadaic_acid ( 59 , 60 ) , olaparib ( 24 ) , PDTC ( 129 ) , peptide inhibitor ( 100 ) , PHA-767491 ( 35 ) , phorbol_ester ( 7 ) , phytohaemagglutinin ( 7 ) , rapamycin ( 124 ) , resveratrol ( 5 , 118 ) , ryuvidine ( 35 ) , SB203580 ( 120 ) , silibinin ( 116 ) , silymarin ( 116 ) , siRNA ( 46 , 78 , 86 , 89 , 92 , 114 , 120 , 138 , 145 ) , SJG-136 ( 110 ) , SN-38 ( 140 ) , thymidine ( 33 , 68 ) , tioguanine ( 135 ) , TMZ ( 136 ) , U0126 ( 93 ) , UCN-01 ( 135 , 137 ) , UV ( 28 , 53 , 70 , 75 , 92 , 117 , 126 , 127 , 128 , 139 , 143 , 145 , 147 , 164 ) , VE-821 ( 4 , 41 , 42 ) , virus infection ( 49 , 80 ) , VRX0466617 ( 26 , 59 , 97 ) , wortmannin ( 59 , 161 )

Downstream Regulation
Effects of modification on Chk2:
enzymatic activity, induced ( 77 , 91 , 104 , 109 , 115 , 117 , 126 , 130 , 157 , 158 , 159 , 160 , 162 , 163 , 165 ) , intracellular localization ( 64 , 79 , 91 , 115 , 117 , 159 ) , molecular association, regulation ( 54 , 117 , 152 , 158 ) , phosphorylation ( 157 , 160 ) , protein conformation ( 77 , 109 )
Effects of modification on biological processes:
apoptosis, induced ( 152 ) , cell cycle regulation ( 4 , 36 , 64 , 65 , 144 ) , cytoskeletal reorganization ( 64 ) , DNA repair, induced ( 36 ) , signaling pathway regulation ( 4 , 65 ) , translation, induced ( 49 )
Induce interaction with:
Chk2 (human) ( 117 , 158 ) , ERK2 (human) ( 54 ) , MDC1 (human) ( 152 ) , NBS1 (human) ( 115 ) , PLK1 (human) ( 77 )

Disease / Diagnostics Relevance
Relevant diseases:
Bloom's syndrome ( 94 ) , bladder cancer ( 131 ) , small-cell lung cancer ( 111 )

References 

1

Zhu C, et al. (2020) Phospho-Ser-VCP Is Required for DNA Damage Response and Is Associated with Poor Prognosis of Chemotherapy-Treated Breast Cancer. Cell Rep 31, 107745
32521270   Curated Info

2

Zhang W, et al. (2019) KHDC3L mutation causes recurrent pregnancy loss by inducing genomic instability of human early embryonic cells. PLoS Biol 17, e3000468
31609975   Curated Info

3

Piscitello D, et al. (2018) AKT overactivation can suppress DNA repair via p70S6 kinase-dependent downregulation of MRE11. Oncogene 37, 427-438
28967905   Curated Info

4

Šalovská B, et al. (2018) Radio-sensitizing effects of VE-821 and beyond: Distinct phosphoproteomic and metabolomic changes after ATR inhibition in irradiated MOLT-4 cells. PLoS One 13, e0199349
30001349   Curated Info

5

Craveiro M, et al. (2017) Resveratrol stimulates the metabolic reprogramming of human CD4+ T cells to enhance effector function. Sci Signal 10
29042482   Curated Info

6

Hamperl S, et al. (2017) Transcription-Replication Conflict Orientation Modulates R-Loop Levels and Activates Distinct DNA Damage Responses. Cell 170, 774-786.e19
28802045   Curated Info

7

Kim Wiese A, et al. (2017) DNA-PKcs controls calcineurin mediated IL-2 production in T lymphocytes. PLoS One 12, e0181608
28750002   Curated Info

8

Lee YC, Zhou Q, Chen J, Yuan J (2016) RPA-Binding Protein ETAA1 Is an ATR Activator Involved in DNA Replication Stress Response. Curr Biol 26, 3257-3268
27818175   Curated Info

9

Qin Z, et al. (2016) PCNA-Ub polyubiquitination inhibits cell proliferation and induces cell-cycle checkpoints. Cell Cycle 15, 3390-3401
27753536   Curated Info

10

Staples CJ, et al. (2016) MRNIP/C5orf45 Interacts with the MRN Complex and Contributes to the DNA Damage Response. Cell Rep 16, 2565-2575
27568553   Curated Info

11

García-Limones C, et al. (2016) CHK2 stability is regulated by the E3 ubiquitin ligase SIAH2. Oncogene 35, 4289-301
26751770   Curated Info

12

Lima M, et al. (2016) Dual inhibition of ATR and ATM potentiates the activity of trabectedin and lurbinectedin by perturbing the DNA damage response and homologous recombination repair. Oncotarget 7, 25885-901
27029031   Curated Info

13

Mavuluri J, et al. (2016) Phosphorylation-Dependent Regulation of the DNA Damage Response of Adaptor Protein KIBRA in Cancer Cells. Mol Cell Biol 36, 1354-65
26929199   Curated Info

14

Natarajan S, et al. (2016) High Mobility Group A2 protects cancer cells against telomere dysfunction. Oncotarget 7, 12761-82
26799419   Curated Info

15

García V, et al. (2016) Galiellalactone induces cell cycle arrest and apoptosis through the ATM/ATR pathway in prostate cancer cells. Oncotarget 7, 4490-506
26683224   Curated Info

16

Beyaert M, Starczewska E, Van Den Neste E, Bontemps F (2016) A crucial role for ATR in the regulation of deoxycytidine kinase activity. Biochem Pharmacol 100, 40-50
26620371   Curated Info

17

Liberio MS, et al. (2015) The ascidian natural product eusynstyelamide B is a novel topoisomerase II poison that induces DNA damage and growth arrest in prostate and breast cancer cells. Oncotarget 6, 43944-63
26733491   Curated Info

18

Agarwal S, Bell CM, Rothbart SB, Moran RG (2015) AMP-activated Protein Kinase (AMPK) Control of mTORC1 Is p53- and TSC2-independent in Pemetrexed-treated Carcinoma Cells. J Biol Chem 290, 27473-86
26391395   Curated Info

19

Shojaee S, et al. (2015) Erk Negative Feedback Control Enables Pre-B Cell Transformation and Represents a Therapeutic Target in Acute Lymphoblastic Leukemia. Cancer Cell 28, 114-28
26073130   Curated Info

20

Magni M, et al. (2015) CCAR2/DBC1 is required for Chk2-dependent KAP1 phosphorylation and repair of DNA damage. Oncotarget 6, 17817-31
26158765   Curated Info

21

Wei F, et al. (2015) BMI1 attenuates etoposide-induced G2/M checkpoints via reducing ATM activation. Oncogene 34, 3063-75
25088203   Curated Info

22

Wang WT, Catto JW, Meuth M (2015) Differential response of normal and malignant urothelial cells to CHK1 and ATM inhibitors. Oncogene 34, 2887-96
25043304   Curated Info

23

Li N, et al. (2015) FBXW7-mutated colorectal cancer cells exhibit aberrant expression of phosphorylated-p53 at Serine-15. Oncotarget 6, 9240-56
25860929   Curated Info

24

Gill SJ, et al. (2015) Combinations of PARP Inhibitors with Temozolomide Drive PARP1 Trapping and Apoptosis in Ewing's Sarcoma. PLoS One 10, e0140988
26505995   Curated Info

25

Wang J, et al. (2014) PTIP associates with Artemis to dictate DNA repair pathway choice. Genes Dev 28, 2693-8
25512557   Curated Info

26

Magni M, et al. (2014) Chk2 and REGγ-dependent DBC1 regulation in DNA damage induced apoptosis. Nucleic Acids Res 42, 13150-60
25361978   Curated Info

27

Akaike Y, et al. (2014) HuR regulates alternative splicing of the TRA2β gene in human colon cancer cells under oxidative stress. Mol Cell Biol 34, 2857-73
24865968   Curated Info

28

Hirokawa T, et al. (2014) CBP-93872 inhibits NBS1-mediated ATR activation, abrogating maintenance of the DNA double-strand break-specific G2 checkpoint. Cancer Res 74, 3880-9
24876101   Curated Info

29

Douglas P, et al. (2014) Polo-like kinase 1 (PLK1) and protein phosphatase 6 (PP6) regulate DNA-dependent protein kinase catalytic subunit (DNA-PKcs) phosphorylation in mitosis. Biosci Rep 34
24844881   Curated Info

30

Petsalaki E, Zachos G (2014) Chk2 prevents mitotic exit when the majority of kinetochores are unattached. J Cell Biol 205, 339-56
24798733   Curated Info

31

Wang Q, et al. (2014) Rad17 recruits the MRE11-RAD50-NBS1 complex to regulate the cellular response to DNA double-strand breaks. EMBO J 33, 862-77
24534091   Curated Info

32

Yoo JE, Park YN, Oh BK (2014) PinX1, a telomere repeat-binding factor 1 (TRF1)-interacting protein, maintains telomere integrity by modulating TRF1 homeostasis, the process in which human telomerase reverse Transcriptase (hTERT) plays dual roles. J Biol Chem 289, 6886-98
24415760   Curated Info

33

Kubota S, et al. (2014) Activation of the Prereplication Complex Is Blocked by Mimosine through Reactive Oxygen Species-activated Ataxia Telangiectasia Mutated (ATM) Protein without DNA Damage. J Biol Chem 289, 5730-46
24421316   Curated Info

34

Ullal AV, et al. (2014) Cancer cell profiling by barcoding allows multiplexed protein analysis in fine-needle aspirates. Sci Transl Med 6, 219ra9
24431113   Curated Info

35

FitzGerald J, et al. (2014) A High Through-Put Screen for Small Molecules Modulating MCM2 Phosphorylation Identifies Ryuvidine as an Inducer of the DNA Damage Response. PLoS One 9, e98891
24902048   Curated Info

36

Chaudhary N, et al. (2014) SMAR1 coordinates HDAC6-induced deacetylation of Ku70 and dictates cell fate upon irradiation. Cell Death Dis 5, e1447
25299772   Curated Info

37

Toledo LI, et al. (2013) ATR Prohibits Replication Catastrophe by Preventing Global Exhaustion of RPA. Cell 155, 1088-103
24267891   Curated Info

38

Staibano S, et al. (2013) Critical role of CCDC6 in the neoplastic growth of testicular germ cell tumors. BMC Cancer 13, 433
24059746   Curated Info

39

Wen J, et al. (2013) NBN phosphorylation regulates the accumulation of MRN and ATM at sites of DNA double-strand breaks. Oncogene 32, 4448-56
23146902   Curated Info

40

Vidal-Eychenié S, Décaillet C, Basbous J, Constantinou A (2013) DNA structure-specific priming of ATR activation by DNA-PKcs. J Cell Biol 202, 421-9
23897887   Curated Info

41

Couch FB, et al. (2013) ATR phosphorylates SMARCAL1 to prevent replication fork collapse. Genes Dev 27, 1610-23
23873943   Curated Info

42

Shiotani B, et al. (2013) Two Distinct Modes of ATR Activation Orchestrated by Rad17 and Nbs1. Cell Rep 3, 1651-62
23684611   Curated Info

43

Beli P, et al. (2012) Proteomic Investigations Reveal a Role for RNA Processing Factor THRAP3 in the DNA Damage Response. Mol Cell 46, 212-25
22424773   Curated Info

44

Lee AY, et al. (2012) Dbf4 is direct downstream target of ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3-related (ATR) protein to regulate intra-S-phase checkpoint. J Biol Chem 287, 2531-43
22123827   Curated Info

45

Kruiswijk F, et al. (2012) Coupled Activation and Degradation of eEF2K Regulates Protein Synthesis in Response to Genotoxic Stress. Sci Signal 5, ra40
22669845   Curated Info

46

Yang C, et al. (2011) Aurora-B Mediated ATM Serine 1403 Phosphorylation Is Required for Mitotic ATM Activation and the Spindle Checkpoint. Mol Cell 44, 597-608
22099307   Curated Info

47

Prendergast ÁM, et al. (2011) Activation of DNA damage response pathways in human mesenchymal stem cells exposed to cisplatin or γ-irradiation. Cell Cycle 10, 3768-77
22037398   Curated Info

48

Lossaint G, et al. (2011) Chk1 is dispensable for G2 arrest in response to sustained DNA damage when the ATM/p53/p21 pathway is functional. Oncogene 30, 4261-74
21532626   Curated Info

49

Norman JM, et al. (2011) The antiviral factor APOBEC3G enhances the recognition of HIV-infected primary T cells by natural killer cells. Nat Immunol 12, 975-83
21874023   Curated Info

50

Cheng F, et al. (2011) Camptothecin-induced downregulation of MLL5 contributes to the activation of tumor suppressor p53. Oncogene 30, 3599-611
21423215   Curated Info

51

Parsels LA, et al. (2011) Assessment of chk1 phosphorylation as a pharmacodynamic biomarker of chk1 inhibition. Clin Cancer Res 17, 3706-15
21482692   Curated Info

52

Wang X, et al. (2011) A positive role for c-Abl in Atm and Atr activation in DNA damage response. Cell Death Differ 18, 5-15
20798688   Curated Info

53

Liaw H, Lee D, Myung K (2011) DNA-PK-dependent RPA2 hyperphosphorylation facilitates DNA repair and suppresses sister chromatid exchange. PLoS One 6, e21424
21731742   Curated Info

54

Dai B, et al. (2011) Functional and molecular interactions between ERK and CHK2 in diffuse large B-cell lymphoma. Nat Commun 2, 402
21772273   Curated Info

55

Bhatia P, et al. (2010) Mitotic DNA damage targets the Aurora A/TPX2 complex. Cell Cycle 9, 4592-9
21099343   Curated Info

56

Olsen BB, Issinger OG, Guerra B (2010) Regulation of DNA-dependent protein kinase by protein kinase CK2 in human glioblastoma cells. Oncogene 29, 6016-26
20711232   Curated Info

57

Wei F, Xie Y, Tao L, Tang D (2010) Both ERK1 and ERK2 kinases promote G2/M arrest in etoposide-treated MCF7 cells by facilitating ATM activation. Cell Signal 22, 1783-9
20637859   Curated Info

58

Guo X, et al. (2010) Interdependent phosphorylation within the kinase domain T-loop Regulates CHK2 activity. J Biol Chem 285, 33348-57
20713355   Curated Info

59

Carlessi L, Buscemi G, Fontanella E, Delia D (2010) A protein phosphatase feedback mechanism regulates the basal phosphorylation of Chk2 kinase in the absence of DNA damage. Biochim Biophys Acta 1803, 1213-23
20599567   Curated Info

60

Yan Y, et al. (2010) Protein phosphatase 2A has an essential role in the activation of gamma-irradiation-induced G2/M checkpoint response. Oncogene 29, 4317-29
20498628   Curated Info

61

Giunta S, Belotserkovskaya R, Jackson SP (2010) DNA damage signaling in response to double-strand breaks during mitosis. J Cell Biol 190, 197-207
20660628   Curated Info

62

Morgan MA, et al. (2010) Mechanism of radiosensitization by the Chk1/2 inhibitor AZD7762 involves abrogation of the G2 checkpoint and inhibition of homologous recombinational DNA repair. Cancer Res 70, 4972-81
20501833   Curated Info

63

Greer Card DA, Sierant ML, Davey S (2010) Rad9A is required for G2 decatenation checkpoint and to prevent endoreduplication in response to topoisomerase II inhibition. J Biol Chem 285, 15653-61
20305300   Curated Info

64

Shang ZF, et al. (2010) Inactivation of DNA-dependent protein kinase leads to spindle disruption and mitotic catastrophe with attenuated checkpoint protein 2 Phosphorylation in response to DNA damage. Cancer Res 70, 3657-66
20406977   Curated Info

65

Bower JJ, et al. (2010) Revised genetic requirements for the decatenation G2 checkpoint: the role of ATM. Cell Cycle 9, 1617-28
20372057   Curated Info

66

Kodama M, et al. (2010) Requirement of ATM for rapid p53 phosphorylation at Ser46 without Ser/Thr-Gln sequences. Mol Cell Biol 30, 1620-33
20123963   Curated Info

67

Deibler RW, Kirschner MW (2010) Quantitative reconstitution of mitotic CDK1 activation in somatic cell extracts. Mol Cell 37, 753-67
20347419   Curated Info

68

Gagou ME, Zuazua-Villar P, Meuth M (2010) Enhanced H2AX phosphorylation, DNA replication fork arrest, and cell death in the absence of Chk1. Mol Biol Cell 21, 739-52
20053681   Curated Info

69

Safa M, et al. (2010) Inhibitory role of cAMP on doxorubicin-induced apoptosis in pre-B ALL cells through dephosphorylation of p53 serine residues. Apoptosis 15, 196-203
19882354   Curated Info

70

Freeman AK, Dapic V, Monteiro AN (2010) Negative regulation of CHK2 activity by protein phosphatase 2A is modulated by DNA damage. Cell Cycle 9, 736-47
20160490   Curated Info

71

van Vugt MA, et al. (2010) A Mitotic Phosphorylation Feedback Network Connects Cdk1, Plk1, 53BP1, and Chk2 to Inactivate the G(2)/M DNA Damage Checkpoint. PLoS Biol 8, e1000287
20126263   Curated Info

72

Craig AL, et al. (2010) DeltaNp63 transcriptionally regulates ATM to control p53 Serine-15 phosphorylation. Mol Cancer 9, 195
20663147   Curated Info

73

You Z, et al. (2009) CtIP links DNA double-strand break sensing to resection. Mol Cell 36, 954-69
20064462   Curated Info

74

Calabrese V, et al. (2009) SOCS1 links cytokine signaling to p53 and senescence. Mol Cell 36, 754-67
20005840   Curated Info

75

Klevernic IV, Morton S, Davis RJ, Cohen P (2009) Phosphorylation of Ewing's sarcoma protein (EWS) and EWS-Fli1 in response to DNA damage. Biochem J 418, 625-34
19076070   Curated Info

76

Yeh YH, Huang YF, Lin TY, Shieh SY (2009) The cell cycle checkpoint kinase CHK2 mediates DNA damage-induced stabilization of TTK/hMps1. Oncogene 28, 1366-78
19151762   Curated Info

77

Li J, et al. (2008) Chk2 oligomerization studied by phosphopeptide ligation: implications for regulation and phosphodependent interactions. J Biol Chem 283, 36019-30
18948271   Curated Info

78

Chou WC, et al. (2008) Chk2-dependent phosphorylation of XRCC1 in the DNA damage response promotes base excision repair. EMBO J 27, 3140-50
18971944   Curated Info

79

Takahashi A, et al. (2008) DNA damage recognition proteins localize along heavy ion induced tracks in the cell nucleus. J Radiat Res (Tokyo) 49, 645-52
18987440   Curated Info

80

Zhao F, et al. (2008) Ataxia telangiectasia-mutated-Rad3-related DNA damage checkpoint signaling pathway triggered by hepatitis B virus infection. World J Gastroenterol 14, 6163-70
18985806   Curated Info

81

Lovly CM, et al. (2008) Regulation of Chk2 ubiquitination and signaling through autophosphorylation of serine 379. Mol Cell Biol 28, 5874-85
18644861   Curated Info

82

Guirouilh-Barbat J, Redon C, Pommier Y (2008) Transcription-coupled DNA double-strand breaks are mediated via the nucleotide excision repair and the Mre11-Rad50-Nbs1 complex. Mol Biol Cell 19, 3969-81
18632984   Curated Info

83

Gabant G, et al. (2008) Autophosphorylated residues involved in the regulation of human chk2 in vitro. J Mol Biol 380, 489-503
18538787   Curated Info

84

Chowdhury D, et al. (2008) A PP4-phosphatase complex dephosphorylates gamma-H2AX generated during DNA replication. Mol Cell 31, 33-46
18614045   Curated Info

85

Gehen SC, et al. (2008) hSMG-1 and ATM sequentially and independently regulate the G1 checkpoint during oxidative stress. Oncogene 27, 4065-74
18332866   Curated Info

86

Yan Y, et al. (2008) Gamma-irradiation-induced DNA damage checkpoint activation involves feedback regulation between extracellular signal-regulated kinase 1/2 and BRCA1. Cancer Res 68, 5113-21
18593910   Curated Info

87

Sidi S, et al. (2008) Chk1 suppresses a caspase-2 apoptotic response to DNA damage that bypasses p53, Bcl-2, and caspase-3. Cell 133, 864-77
18510930   Curated Info

88

Richard DJ, et al. (2008) Single-stranded DNA-binding protein hSSB1 is critical for genomic stability. Nature 453, 677-81
18449195   Curated Info

89

Gabai VL, et al. (2008) Triggering senescence programs suppresses Chk1 kinase and sensitizes cells to genotoxic stresses. Cancer Res 68, 1834-42
18339864   Curated Info

90

Kodym E, Kodym R, Choy H, Saha D (2008) Sustained metaphase arrest in response to ionizing radiation in a non-small cell lung cancer cell line. Radiat Res 169, 46-58
18159951   Curated Info

91

Gupta SK, et al. (2007) Human T-cell leukemia virus type 1 Tax oncoprotein prevents DNA damage-induced chromatin egress of hyperphosphorylated Chk2. J Biol Chem 282, 29431-40
17698850   Curated Info

92

Kremer BE, Adang LA, Macara IG (2007) Septins regulate actin organization and cell-cycle arrest through nuclear accumulation of NCK mediated by SOCS7. Cell 130, 837-50
17803907   Curated Info

93

Yan Y, Black CP, Cowan KH (2007) Irradiation-induced G2/M checkpoint response requires ERK1/2 activation. Oncogene 26, 4689-98
17297454   Curated Info

94

Rao VA, et al. (2007) Endogenous gamma-H2AX-ATM-Chk2 checkpoint activation in Bloom's syndrome helicase deficient cells is related to DNA replication arrested forks. Mol Cancer Res 5, 713-24
17634426   Curated Info

95

Berkovich E, Monnat RJ, Kastan MB (2007) Roles of ATM and NBS1 in chromatin structure modulation and DNA double-strand break repair. Nat Cell Biol 9, 683-90
17486112   Curated Info

96

Oliva-Trastoy M, et al. (2007) The Wip1 phosphatase (PPM1D) antagonizes activation of the Chk2 tumour suppressor kinase. Oncogene 26, 1449-58
16936775   Curated Info

97

Carlessi L, et al. (2007) Biochemical and cellular characterization of VRX0466617, a novel and selective inhibitor for the checkpoint kinase Chk2. Mol Cancer Ther 6, 935-44
17363488   Curated Info

98

Jiang W, et al. (2007) HIV protease inhibitor nelfinavir inhibits growth of human melanoma cells by induction of cell cycle arrest. Cancer Res 67, 1221-7
17283158   Curated Info

99

Kennedy DR, et al. (2007) Single chemical modifications of the C-1027 enediyne core, a radiomimetic antitumor drug, affect both drug potency and the role of ataxia-telangiectasia mutated in cellular responses to DNA double-strand breaks. Cancer Res 67, 773-81
17234789   Curated Info

100

Sha SK, et al. (2007) Cell cycle phenotype-based optimization of G2-abrogating peptides yields CBP501 with a unique mechanism of action at the G2 checkpoint. Mol Cancer Ther 6, 147-53
17237275   Curated Info

101

King JB, et al. (2007) Identification of protein phosphorylation sites within Ser/Thr-rich cluster domains using site-directed mutagenesis and hybrid linear quadrupole ion trap Fourier transform ion cyclotron resonance mass spectrometry. Rapid Commun Mass Spectrom 21, 3443-51
17918214   Curated Info

102

Stiff T, et al. (2006) ATR-dependent phosphorylation and activation of ATM in response to UV treatment or replication fork stalling. EMBO J 25, 5775-82
17124492   Curated Info

103

Agarwal C, Tyagi A, Agarwal R (2006) Gallic acid causes inactivating phosphorylation of cdc25A/cdc25C-cdc2 via ATM-Chk2 activation, leading to cell cycle arrest, and induces apoptosis in human prostate carcinoma DU145 cells. Mol Cancer Ther 5, 3294-302
17172433   Curated Info

104

Buscemi G, et al. (2006) DNA damage-induced cell cycle regulation and function of novel Chk2 phosphoresidues. Mol Cell Biol 26, 7832-45
16940182   Curated Info

105

Sodha N, et al. (2006) Rare germ line CHEK2 variants identified in breast cancer families encode proteins that show impaired activation. Cancer Res 66, 8966-70
16982735   Curated Info

106

Zhang J, et al. (2006) Identification of an ataxia telangiectasia-mutated protein mediated surveillance system to regulate Bcl-2 overexpression. Oncogene 25, 5601-11
16636671   Curated Info

107

Shreeram S, et al. (2006) Wip1 phosphatase modulates ATM-dependent signaling pathways. Mol Cell 23, 757-64
16949371   Curated Info

108

Yoda A, et al. (2006) Intrinsic kinase activity and SQ/TQ domain of Chk2 kinase as well as N-terminal domain of Wip1 phosphatase are required for regulation of Chk2 by Wip1. J Biol Chem 281, 24847-62
16798742   Curated Info

109

Oliver AW, et al. (2006) Trans-activation of the DNA-damage signalling protein kinase Chk2 by T-loop exchange. EMBO J 25, 3179-90
16794575   Curated Info

110

Arnould S, et al. (2006) Time-dependent cytotoxicity induced by SJG-136 (NSC 694501): influence of the rate of interstrand cross-link formation on DNA damage signaling. Mol Cancer Ther 5, 1602-9
16818520   Curated Info

111

Eymin B, et al. (2006) p14ARF activates a Tip60-dependent and p53-independent ATM/ATR/CHK pathway in response to genotoxic stress. Mol Cell Biol 26, 4339-50
16705183   Curated Info

112

Kaur M, Agarwal R, Agarwal C (2006) Grape seed extract induces anoikis and caspase-mediated apoptosis in human prostate carcinoma LNCaP cells: possible role of ataxia telangiectasia mutated-p53 activation. Mol Cancer Ther 5, 1265-74
16731759   Curated Info

113

Bahassi el M, et al. (2006) Priming phosphorylation of Chk2 by polo-like kinase 3 (Plk3) mediates its full activation by ATM and a downstream checkpoint in response to DNA damage. Mutat Res 596, 166-76
16481012   Curated Info

114

Aglipay JA, et al. (2006) ATM activation by ionizing radiation requires BRCA1-associated BAAT1. J Biol Chem 281, 9710-8
16452482   Curated Info

115

Cerosaletti K, Wright J, Concannon P (2006) Active role for nibrin in the kinetics of atm activation. Mol Cell Biol 26, 1691-9
16478990   Curated Info

116

Deep G, et al. (2006) Silymarin and silibinin cause G1 and G2-M cell cycle arrest via distinct circuitries in human prostate cancer PC3 cells: a comparison of flavanone silibinin with flavanolignan mixture silymarin. Oncogene 25, 1053-69
16205633   Curated Info

117

Li J, Stern DF (2005) DNA damage regulates Chk2 association with chromatin. J Biol Chem 280, 37948-56
16150728   Curated Info

118

Tyagi A, et al. (2005) Resveratrol causes Cdc2-tyr15 phosphorylation via ATM/ATR-Chk1/2-Cdc25C pathway as a central mechanism for S phase arrest in human ovarian carcinoma Ovcar-3 cells. Carcinogenesis 26, 1978-87
15975956   Curated Info

119

Chen CR, et al. (2005) Dual induction of apoptosis and senescence in cancer cells by Chk2 activation: checkpoint activation as a strategy against cancer. Cancer Res 65, 6017-21
16024600   Curated Info

120

Chen Y, Miao ZH, Zhao WM, Ding J (2005) The p53 pathway is synergized by p38 MAPK signaling to mediate 11,11'-dideoxyverticillin-induced G2/M arrest. FEBS Lett 579, 3683-90
15963507   Curated Info

121

Bhoumik A, et al. (2005) ATM-dependent phosphorylation of ATF2 is required for the DNA damage response. Mol Cell 18, 577-87
15916964   Curated Info

122

Gorgoulis VG, et al. (2005) Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 434, 907-13
15829965   Curated Info

123

Falck J, Coates J, Jackson SP (2005) Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage. Nature 434, 605-11
15758953   Curated Info

124

Li J, Stern DF (2005) Regulation of CHK2 by DNA-dependent protein kinase. J Biol Chem 280, 12041-50
15668230   Curated Info

125

Jin ZH, et al. (2005) Hematopoietic cytokines enhance Chk1-dependent G2/M checkpoint activation by etoposide through the Akt/GSK3 pathway to inhibit apoptosis. Oncogene 24, 1973-81
15674326   Curated Info

126

Wei JH, et al. (2005) TTK/hMps1 participates in the regulation of DNA damage checkpoint response by phosphorylating CHK2 on threonine 68. J Biol Chem 280, 7748-57
15618221   Curated Info

127

Helt CE, et al. (2005) Ataxia telangiectasia mutated (ATM) and ATM and Rad3-related protein exhibit selective target specificities in response to different forms of DNA damage. J Biol Chem 280, 1186-92
15533933   Curated Info

128

Manke IA, et al. (2005) MAPKAP kinase-2 is a cell cycle checkpoint kinase that regulates the G2/M transition and S phase progression in response to UV irradiation. Mol Cell 17, 37-48
15629715   Curated Info

129

Kurz EU, Douglas P, Lees-Miller SP (2004) Doxorubicin activates ATM-dependent phosphorylation of multiple downstream targets in part through the generation of reactive oxygen species. J Biol Chem 279, 53272-81
15489221   Curated Info

130

Tosti E, et al. (2004) The stress kinase MRK contributes to regulation of DNA damage checkpoints through a p38gamma-independent pathway. J Biol Chem 279, 47652-60
15342622   Curated Info

131

Bartkova J, et al. (2004) Aberrations of the Chk2 tumour suppressor in advanced urinary bladder cancer. Oncogene 23, 8545-51
15361851   Curated Info

132

Buscemi G, et al. (2004) Activation of ATM and Chk2 kinases in relation to the amount of DNA strand breaks. Oncogene 23, 7691-700
15361830   Curated Info

133

Wang J, et al. (2004) ATM-dependent CHK2 activation induced by anticancer agent, irofulven. J Biol Chem 279, 39584-92
15269203   Curated Info

134

Cerosaletti K, Concannon P (2004) Independent roles for nibrin and Mre11-Rad50 in the activation and function of Atm. J Biol Chem 279, 38813-9
15234984   Curated Info

135

Yan T, et al. (2004) CHK1 and CHK2 are differentially involved in mismatch repair-mediated 6-thioguanine-induced cell cycle checkpoint responses. Mol Cancer Ther 3, 1147-57
15367709   Curated Info

136

Caporali S, et al. (2004) DNA damage induced by temozolomide signals to both ATM and ATR: role of the mismatch repair system. Mol Pharmacol 66, 478-91
15322239   Curated Info

137

Shankar SL, et al. (2004) UCN-01 alters phosphorylation of Akt and GSK3beta and induces apoptosis in six independent human neuroblastoma cell lines. J Neurochem 90, 702-11
15255949   Curated Info

138

Zhu W, Chen Y, Dutta A (2004) Rereplication by depletion of geminin is seen regardless of p53 status and activates a G2/M checkpoint. Mol Cell Biol 24, 7140-50
15282313   Curated Info

139

Fabbro M, et al. (2004) BRCA1-BARD1 complexes are required for p53Ser-15 phosphorylation and a G1/S arrest following ionizing radiation-induced DNA damage. J Biol Chem 279, 31251-8
15159397   Curated Info

140

Yin MB, et al. (2004) Enhanced 7-ethyl-10-hydroxycamptothecin (SN-38) lethality by methylselenocysteine is associated with Chk2 phosphorylation at threonine-68 and down-regulation of Cdc6 expression. Mol Pharmacol 66, 153-60
15213307   Curated Info

141

Latella L, et al. (2004) Differentiation-induced radioresistance in muscle cells. Mol Cell Biol 24, 6350-61
15226436   Curated Info

142

Zhu Y, et al. (2004) Intra-S-phase checkpoint activation by direct CDK2 inhibition. Mol Cell Biol 24, 6268-77
15226429   Curated Info

143

Singh SV, et al. (2004) Sulforaphane-induced G2/M phase cell cycle arrest involves checkpoint kinase 2-mediated phosphorylation of cell division cycle 25C. J Biol Chem 279, 25813-22
15073169   Curated Info

144

Castedo M, et al. (2004) The cell cycle checkpoint kinase Chk2 is a negative regulator of mitotic catastrophe. Oncogene 23, 4353-61
15048074   Curated Info

145

Lin SY, Li K, Stewart GS, Elledge SJ (2004) Human Claspin works with BRCA1 to both positively and negatively regulate cell proliferation. Proc Natl Acad Sci U S A 101, 6484-9
15096610   Curated Info

146

Powers JT, et al. (2004) E2F1 uses the ATM signaling pathway to induce p53 and Chk2 phosphorylation and apoptosis. Mol Cancer Res 2, 203-14
15140942   Curated Info

147

Mochan TA, Venere M, DiTullio RA, Halazonetis TD (2003) 53BP1 and NFBD1/MDC1-Nbs1 function in parallel interacting pathways activating ataxia-telangiectasia mutated (ATM) in response to DNA damage. Cancer Res 63, 8586-91
14695167   Curated Info

148

Wu X, Chen J (2003) Autophosphorylation of checkpoint kinase 2 at serine 516 is required for radiation-induced apoptosis. J Biol Chem 278, 36163-8
12855706   Curated Info

149

Schwarz JK, Lovly CM, Piwnica-Worms H (2003) Regulation of the Chk2 protein kinase by oligomerization-mediated cis- and trans-phosphorylation. Mol Cancer Res 1, 598-609
12805407   Curated Info

150

Ha L, Ceryak S, Patierno SR (2003) Chromium (VI) activates ataxia telangiectasia mutated (ATM) protein. Requirement of ATM for both apoptosis and recovery from terminal growth arrest. J Biol Chem 278, 17885-94
12637545   Curated Info

151

Tsvetkov L, Xu X, Li J, Stern DF (2003) Polo-like kinase 1 and Chk2 interact and co-localize to centrosomes and the midbody. J Biol Chem 278, 8468-75
12493754   Curated Info

152

Lou Z, Minter-Dykhouse K, Wu X, Chen J (2003) MDC1 is coupled to activated CHK2 in mammalian DNA damage response pathways. Nature 421, 957-61
12607004   Curated Info

153

Goldberg M, et al. (2003) MDC1 is required for the intra-S-phase DNA damage checkpoint. Nature 421, 952-6
12607003   Curated Info

154

Brown KD, et al. (2003) The mismatch repair system is required for S-phase checkpoint activation. Nat Genet 33, 80-4
12447371   Curated Info

155

Ahn J, Prives C (2002) Checkpoint kinase 2 (Chk2) monomers or dimers phosphorylate Cdc25C after DNA damage regardless of threonine 68 phosphorylation. J Biol Chem 277, 48418-26
12386164   Curated Info

156

DiTullio RA, et al. (2002) 53BP1 functions in an ATM-dependent checkpoint pathway that is constitutively activated in human cancer. Nat Cell Biol 4, 998-1002
12447382   Curated Info

157

Xu X, Tsvetkov LM, Stern DF (2002) Chk2 activation and phosphorylation-dependent oligomerization. Mol Cell Biol 22, 4419-32
12024051   Curated Info

158

Ahn JY, Li X, Davis HL, Canman CE (2002) Phosphorylation of threonine 68 promotes oligomerization and autophosphorylation of the Chk2 protein kinase via the forkhead-associated domain. J Biol Chem 277, 19389-95
11901158   Curated Info

159

Ward IM, Wu X, Chen J (2001) Threonine 68 of Chk2 is phosphorylated at sites of DNA strand breaks. J Biol Chem 276, 47755-8
11668173   Curated Info

160

Lee CH, Chung JH (2001) The hCds1 (Chk2)-FHA domain is essential for a chain of phosphorylation events on hCds1 that is induced by ionizing radiation. J Biol Chem 276, 30537-41
11390408   Curated Info

161

Ye R, et al. (2001) The plant isoflavenoid genistein activates p53 and Chk2 in an ATM-dependent manner. J Biol Chem 276, 4828-33
11096068   Curated Info

162

Ahn JY, Schwarz JK, Piwnica-Worms H, Canman CE (2000) Threonine 68 phosphorylation by ataxia telangiectasia mutated is required for efficient activation of Chk2 in response to ionizing radiation. Cancer Res 60, 5934-6
11085506   Curated Info

163

Melchionna R, Chen XB, Blasina A, McGowan CH (2000) Threonine 68 is required for radiation-induced phosphorylation and activation of Cds1. Nat Cell Biol 2, 762-5
11025670   Curated Info

164

Matsuoka S, et al. (2000) Ataxia telangiectasia-mutated phosphorylates Chk2 in vivo and in vitro. Proc Natl Acad Sci U S A 97, 10389-94
10973490   Curated Info

165

Zhou BB, et al. (2000) Caffeine abolishes the mammalian G(2)/M DNA damage checkpoint by inhibiting ataxia-telangiectasia-mutated kinase activity. J Biol Chem 275, 10342-8
10744722   Curated Info