Ser45
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.7.5
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser45  -  CTNNB1 (mouse)

Site Information
GATtTAPsLsGkGNP   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 447488

In vivo Characterization
Methods used to characterize site in vivo:
immunoassay ( 3 , 5 ) , immunoprecipitation ( 6 , 12 ) , mass spectrometry ( 10 ) , mutation of modification site ( 3 , 4 , 6 , 12 ) , phospho-antibody ( 1 , 3 , 5 , 6 , 7 , 9 , 11 ) , western blotting ( 1 , 3 , 6 , 7 , 9 , 11 , 12 )
Disease tissue studied:
neuroblastoma ( 12 )
Relevant cell line - cell type - tissue:
293 (epithelial) ( 11 ) , endothelial ( 3 ) , esophageal ( 5 ) , hTERT-RPE1 (epithelial) ( 4 ) , intestine [CK1A (mouse), homozygous knockout] ( 9 ) , kidney ( 10 ) , mLEC (epithelial) ( 1 ) , Neuro-2a (neuron) ( 12 ) , squamous ( 5 )

Upstream Regulation
Regulatory protein:
CK1A (mouse) ( 7 ) , GLRX1 (human) ( 1 )
Putative in vivo kinases:
CK1A (mouse) ( 1 , 9 ) , CK1E (human) ( 11 ) , GSK3B (mouse) ( 12 ) , PKCZ (mouse) ( 6 )
Kinases, in vitro:
CK1A (human) ( 1 ) , CK1D (mouse) ( 4 ) , CK1E (human) ( 11 )
Treatments:
H2O2 ( 1 ) , HGF ( 3 ) , LLnL ( 12 )

Downstream Regulation
Effects of modification on CTNNB1:
intracellular localization ( 1 ) , protein degradation ( 12 ) , ubiquitination ( 12 )
Effects of modification on biological processes:
transcription, altered ( 1 )

Disease / Diagnostics Relevance
Relevant diseases:
esophageal carcinoma ( 5 ) , cancer, squamous cell carcinoma ( 5 )

References 

1

Li C, et al. (2023) Glutaredoxin 1 protects lens epithelial cells from epithelial-mesenchymal transition by preventing casein kinase 1α S-glutathionylation during posterior capsular opacification. Redox Biol 62, 102676
36989576   Curated Info

2

Hou J, et al. (2020) DACT2 regulates structural and electrical atrial remodeling in atrial fibrillation. J Thorac Dis
32642106   Curated Info

3

Huang M, et al. (2020) Wnt-mediated endothelial transformation into mesenchymal stem cell-like cells induces chemoresistance in glioblastoma. Sci Transl Med 12
32102932   Curated Info

4

Kyun ML, et al. (2020) Wnt3a Stimulation Promotes Primary Ciliogenesis through β-Catenin Phosphorylation-Induced Reorganization of Centriolar Satellites. Cell Rep 30, 1447-1462.e5
32023461   Curated Info

5

Pan X, Ma L, Wang J (2019) The clinicopathological significance and prognostic value of ¿¿-catenin Ser45-phosphorylation expression in esophageal squamous cell carcinoma. Int J Clin Exp Pathol
31934197   Curated Info

6

Llado V, et al. (2015) Repression of Intestinal Stem Cell Function and Tumorigenesis through Direct Phosphorylation of β-Catenin and Yap by PKCζ Cell Rep
25660024   Curated Info

7

Bowman BM, et al. (2015) Phosphorylation of FADD by the kinase CK1α promotes KRASG12D-induced lung cancer. Sci Signal 8, ra9
25628462   Curated Info

8

Mertins P, et al. (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol Cell Proteomics 13, 1690-704
24719451   Curated Info

9

Elyada E, et al. (2011) CKIα ablation highlights a critical role for p53 in invasiveness control. Nature 470, 409-13
21331045   Curated Info

10

Huttlin EL, et al. (2010) A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 143, 1174-89
21183079   Curated Info

11

Sakanaka C (2002) Phosphorylation and regulation of beta-catenin by casein kinase I epsilon. J Biochem (Tokyo) 132, 697-703
12417018   Curated Info

12

Aberle H, et al. (1997) beta-catenin is a target for the ubiquitin-proteasome pathway. EMBO J 16, 3797-804
9233789   Curated Info