|
Powered by Cell Signaling Technology |
Site Information |
---|
AGstIsNsHAQPFDF SwissProt Entrez-Gene |
Blast this site against: NCBI SwissProt PDB |
Site Group ID: 449994 |
In vivo Characterization | |
---|---|
Methods used to characterize site in vivo: | |
Disease tissue studied: | |
Relevant cell line - cell type - tissue: |
Upstream Regulation | |
---|---|
Kinases, in vitro: |
Downstream Regulation | |
---|---|
Effects of modification on GJA1: |
References | |
---|---|
Yi T, et al. (2014) Quantitative phosphoproteomic analysis reveals system-wide signaling pathways downstream of SDF-1/CXCR4 in breast cancer stem cells. Proc Natl Acad Sci U S A 111, E2182-90
24782546 Curated Info |
|
Grosely R, et al. (2013) Effects of Phosphorylation on the Structure and Backbone Dynamics of the Intrinsically Disordered Connexin43 C-terminal Domain. J Biol Chem 288, 24857-70
23828237 Curated Info |
|
Klammer M, et al. (2012) Phosphosignature predicts dasatinib response in non-small cell lung cancer. Mol Cell Proteomics 11, 651-68
22617229 Curated Info |
|
Thingholm TE, et al. (2008) TiO2-Based Phosphoproteomic Analysis of the Plasma Membrane and the Effects of Phosphatase Inhibitor Treatment. J Proteome Res 7, 3304-3313
18578522 Curated Info |
|
Solan JL, Lampe PD (2007) Key connexin 43 phosphorylation events regulate the gap junction life cycle. J Membr Biol 217, 35-41
17629739 Curated Info |