Ser115
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.7.5
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser115  -  RPL28 (human)

Site Information
MAAIRRAsAILRSQk   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 485032

In vivo Characterization
Methods used to characterize site in vivo:
mass spectrometry ( 1 , 2 , 3 , 4 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 )
Disease tissue studied:
breast cancer ( 2 ) , breast ductal carcinoma ( 2 ) , breast cancer, triple negative ( 2 ) , cervical cancer ( 12 ) , cervical adenocarcinoma ( 12 ) , lung cancer ( 3 , 10 ) , non-small cell lung adenocarcinoma ( 3 )
Relevant cell line - cell type - tissue:
breast ( 2 ) , CL1-0 (pulmonary) ( 10 ) , CL1-1 (pulmonary) ( 10 ) , CL1-2 (pulmonary) ( 10 ) , CL1-5 (pulmonary) ( 10 ) , fibroblast-skin ( 14 ) , HeLa (cervical) ( 6 , 7 ) , HeLa S3 (cervical) [PLK1 (human), knockdown, Tet-inducible PLK1 siRNA] ( 8 ) , HeLa S3 (cervical) ( 8 , 12 , 13 ) , HeLa_Meta (cervical) ( 11 ) , HeLa_Pro (cervical) ( 11 ) , HeLa_Telo (cervical) ( 11 ) , HUES-9 ('stem, embryonic') ( 9 ) , Jurkat (T lymphocyte) ( 4 ) , lung ( 3 ) , Vero E6-S ('epithelial, kidney') ( 1 )

Upstream Regulation
Treatments:
metastatic potential ( 10 ) , nocodazole ( 12 )

References 

1

Bouhaddou M, et al. (2020) The Global Phosphorylation Landscape of SARS-CoV-2 Infection. Cell 182
32645325   Curated Info

2

Mertins P, et al. (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol Cell Proteomics 13, 1690-704
24719451   Curated Info

3

Schweppe DK, Rigas JR, Gerber SA (2013) Quantitative phosphoproteomic profiling of human non-small cell lung cancer tumors. J Proteomics 91, 286-96
23911959   Curated Info

4

Mertins P, et al. (2013) Integrated proteomic analysis of post-translational modifications by serial enrichment. Nat Methods 10, 634-7
23749302   Curated Info

5

Shiromizu T, et al. (2013) Identification of missing proteins in the neXtProt database and unregistered phosphopeptides in the PhosphoSitePlus database as part of the Chromosome-centric Human Proteome Project. J Proteome Res 12, 2414-21
23312004   Curated Info

6

Zhou H, et al. (2013) Toward a comprehensive characterization of a human cancer cell phosphoproteome. J Proteome Res 12, 260-71
23186163   Curated Info

7

Grosstessner-Hain K, et al. (2011) Quantitative phospho-proteomics to investigate the polo-like kinase 1-dependent phospho-proteome. Mol Cell Proteomics 10, M111.008540
21857030   Curated Info

8

Santamaria A, et al. (2011) The Plk1-dependent phosphoproteome of the early mitotic spindle. Mol Cell Proteomics 10, M110.004457
20860994   Curated Info

9

Rigbolt KT, et al. (2011) System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation. Sci Signal 4, rs3
21406692   Curated Info

10

Wang YT, et al. (2010) An informatics-assisted label-free quantitation strategy that depicts phosphoproteomic profiles in lung cancer cell invasion. J Proteome Res 9, 5582-97
20815410   Curated Info

11

Dulla K, et al. (2010) Quantitative site-specific phosphorylation dynamics of human protein kinases during mitotic progression. Mol Cell Proteomics 9, 1167-81
20097925   Curated Info

12

Olsen JV, et al. (2010) Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal 3, ra3
20068231   Curated Info

13

Malik R, et al. (2009) Quantitative analysis of the human spindle phosphoproteome at distinct mitotic stages. J Proteome Res 8, 4553-63
19691289   Curated Info

14

Yang F, et al. (2006) Phosphoproteome profiling of human skin fibroblast cells in response to low- and high-dose irradiation. J Proteome Res 5, 1252-60
16674116   Curated Info